• Title/Summary/Keyword: Out-of-plane Motion

Search Result 163, Processing Time 0.031 seconds

The design of XYZ 3-axis stage for AFM system (AFM 시스템을 위한 XYZ 3축 스테이지의 설계)

  • 김동민;김기현;심종엽;권대갑;엄천일
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.36-36
    • /
    • 2002
  • To Establish of standard technique of length measurent in 2D plane, we develope AFM system. The XY scanner scans the sample only in XY plane, while the Z scanner scans the specimen only in Z-direction. Cantilever tip is controlled to has constant height relative to speciman surface by feedback of PSPD signal. To acquire high accuracy, Z-axis measuring sensor will be added.(COXI or others). In this paper we design XYZ stage suitable for this AEM system. For XY stage, single module parallel-kinnematic flexure stage is used which has high orthogonality and minimum out-of-plane motion. To obtain best performance optimal design is performed. For XY stage, to be robust about parasitic motion optimal design of maximizing Z and tilt stiffness is performed under the constraint of motion range and stage size. And for Z stage, optimal design of maximizing 1st resonant frequency is performed. Because if resonant frequency is get higher, scan speed is improved. So it makes reduce the error by sensor drift. Resultly XYZ stage each have 1st natural frequency of 115㎐, 201㎐, 2.66㎑ and range 109㎛, 110㎛, 12㎛.

  • PDF

Cancellation of MRI Motion Artifact in Image Plane

  • Kim Eung-Kyeu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • In this study, a new algorithm for canceling a MRI artifact due to the translational motion In the image plane is described. Unlike the conventional iterative phase retrieval algorithm, in which there is no guarantee for the convergence, a direct method for estimating the motion is presented. In previous approaches, the motions in the x(read out) direction and the y(phase encoding) direction were estimated simultaneously. However, the feature of x and y directional motions are different from each other. By analyzing their features, each x and y directional motion is canceled by the different algorithms in two steps. First, it is noticed that the x directional motion corresponds to a shift of the x directional spectrum of the MRI signal, and the non-zero area of the spectrum just corresponds to the projected area of the density function on the x axis. So the motion is estimated by tracing the edges between non-zero area and zero area of the spectrum, and the x directional motion is canceled by shifting the spectrum in an reverse direction. Next, the y directional motion is canceled by using a new constraint condition, with which the motion component and the true image component can be separated. This algorithm is shown to be effective by using a phantom image with simulated motion.

  • PDF

Elastic Wave Propagation in Monoclinic System Due to Harmonic Line Load

  • Kim, Yong-Yun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2E
    • /
    • pp.47-52
    • /
    • 1998
  • An analysis of dynamic responses is carried out on monoclinic anisotropic system due to a buried harmonic line source. The load is in the form of a normal stress acting along an arbitrary axis on the plane of symmetry within the orthotropic materials: In case that the line load is acting along the symmetry axis normal to the plane of symmetry, plane wave equation is coupled with verital shear wave and longitudinal wave. However, if the line load is acting along an arbitrary axis normal to the plane of symmetry, plane wave equation is coupled with vertical shear wave, longitudinal wave and horizontal shear wave. We first considered the equation of motion in a reference coordinate system, where the line load is coincident with a symmetry axis of the orthotropic material. Then the equation of motion is transformed into one with respect to general coordinate system with azimuthal angle by using transformation tensor. Plane wave solutions of monoclinic systems are derived for infinite media. Finally complete solutions for the plane harmonic wave are obtained by calculating the inverse of the integral transforms, in which bulk wave poles are avoided by deforming the contour of the integration to the complex plane. Numerical results for examples of orthotropic material belonging to monoclinic symmetry are demonstrated.

  • PDF

Free In-plane Vibration of a Clamped Circular Plate (고정된 원형 플레이트의 평면내 자유진동)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.836-839
    • /
    • 2005
  • The in-plane vibration response of a clamped circular plate should be predicted in many applications. Up to now, papers on the in-plane vibration of rectangular plate are published. However, analytical derivation on the in-plane vibration of the clamped circular plate is not carried out. Therefore, the in-plane vibration of the clamped circular plate is the concern of this paper. In order to derive the equations of motion for the clamped circular plate in the cylindrical coordinate, the kinetic energy and potential energy for the in-plane behavior are obtained by us ing the stress-strain-displacement expressions. Application of Hamilton's principle leads to two sets of differential equations. These displacement equations were highly coupled. It is possible to obtain a simpler set of equations by introducing Helmholtz decomposition. Substituting them into the coupled differential equations, we obtain the uncoupled equations of motion. In order to solve them, we assume that the solutions are harmonic. Then, they lead to the wave equations. Using the separation of variable, we obtain the general solutions for the equations. Based on the solutions, the displacements for r and $\theta$ direction are assumed. Finally we obtain the frequency equation for the clamped circular plate by the application of boundary conditions. The derived equation is compared with the finite element analysis for validation by using the some numerical examples.

  • PDF

Development of Stereoscopic PIV Measurement Technique and Its Application to Wake behind an Axial Fan (Stereoscopic PIV 기법의 개발과 이를 이용한 축류 홴 후류의 유동해석)

  • Yun, Jeong-Hwan;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.362-373
    • /
    • 2002
  • A stereoscopic PIV (SPIV) measurement system based on the translation configuration was developed and applied to the flow behind a forward-swept axial-fan. Measurement of three orthogonal velocity components is essential for flow analysis of three-dimensional flows such as flow around a fan or propeller. In this study, the translation configuration was adopted to calculate the out-of-plane velocity component from 2-D PIV data obtained from two CCD cameras. The error caused by the out-of-plane motion was estimated by direct comparison of the 2-D PIV and 3-D SPIV results that measured from the particle images captured simultaneously. The comparison shows that the error ratio is relatively high in the region of higher out-of-plane motion near the axial fan blade. The turbulence intensity measured by the 2-D PIV method is bigger by about 5.8% in maximum compared with that of the 3-D SPIV method. The phase-averaged velocity field results show that the wake behind an axial fan has a periodic flow structure with respect to the blade phase and the characteristic flow structure is shifted downstream in the next phase.

Out-of-Plane Vibrations of Angled Pipes Conveying Fluid (내부유동을 포함한 굴곡된 파이프의 외평면 진동해석)

  • Pak, chol-Hui;Hong, Sung-Chul;Kim, Tae-Ryong
    • Nuclear Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.306-315
    • /
    • 1991
  • This paper considered the out-of-plane motion of the piping system conveying fluid through the elbow connecting two straight pipes. The extended Hamilton's principle is used to derive equations of motion. It is found that dynamic instability does not exist for the clamped-clamped, clamped-pinned and pinned-pinned boundary conditions. The frequency equations for each boundary conditions are solved numerically to find the natural frequencies. The effects of fluid velocity and Coriolis force on the natural frequencies of piping system are investigated. It is shown that buckling-type instability may occur at certain critical velocities and fluid pressures. Equivalent critical velocity, which is defined as a function of flow velocity and fluid pressure, are calculated for various boundary conditions.

  • PDF

Organization of Circular Motion Accuracy Measuring System of NC Lathe using Linear Scales (리니어 스케일을 이용한 NC 선반의 원 운동정도 측정 시스템의 구성)

  • Kim Young Seuk;Kim Jae Yeol;Kim Jong Kwan;Han Ji Hee;Jung Jung Pyo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.1-6
    • /
    • 2004
  • Measurements of circular motion accuracy of NC lathe have achieved with ball bar systems proposed by Bryan, but the ball bar systems have ifluenced on the measuring data by way of the accuracy of the balls and the contacts of balls and bar seats. Therefore in this study, error data during of circular motion of ATC(Automatic Tool Changer) of NC lathe will be acquired by reading zx plane coordinates using two optical linear scales. Two optical linear scales of measuring unit are fixed on z-x plane of NC lathe, and the moving part is fixed to ATC and then is made to receive data of coordinates of the ATC at constant time intervals using tick pulses comming out from computer. And then, error data files of radial direction of circular motion are calculated with the data read, and the aspect of circular motion are modeled to plots, and are analysed by means of statistical treatments of circularity, means, standard deviations etc.

Cancellation of MRI Motion Artifact in Image Plane (촬상단면내의 MRI 체동 아티팩트의 제거)

  • Kim, Eung-Kyeu
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.4
    • /
    • pp.432-440
    • /
    • 2000
  • In this study, a new algorithm for canceling MRI artifact due to translational motion in image plane is described. Unlike the conventional iterative phase retrieval algorithm, in which there is no guarantee for the convergence, a direct method for estimating the motion is presented. In previous approaches, the motions in the x(read out) direction and the y(phase encoding) direction are estimated simultaneously. However, the features of x and y directional motions are different from each other. By analyzing their features, each x and y directional motion is canceled by different algorithms in two steps. First, it is noticed that the x directional motion corresponds to a shift of the x directional spectrum of the MRI signal, and the non-zero area of the spectrum just corresponds to the projected area of the density function on the x-axis. So the motion is estimated by tracing the edges between non-zero area and zero area of the spectrum, and the x directional motion is canceled by shifting the spectrum in inverse direction. Next, the y directional motion is canceled by using a new constraint condition, with which the motion component and the true image component can be separated. This algorithm is shown to be effective by using a phantom image with simulated motion.

  • PDF

Vibration Analysis of Curved Beams Using Differential Quadrature (수치해석(미분구적법 DQM)을 이용한 곡선보의 진동분석)

  • Ki-Jun Kang
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.199-207
    • /
    • 1999
  • The differential quadrature method (DQM) is applied to computation of eigenvalues of the equations of motion governing the free in-plane and out-of-plane vibrations for circular curved beams. Fundamental frequencies are calculated for the members with various end conditions and opening angles. The results are compared with existing exact solutions and numerical solutions by other methods (Rayleigh-Ritz, Galerkin or FEM) for cases in which they are available. The differential quadrature method gives good accuracy even when only a limited number of grid points is used.

  • PDF

Non-linear Phenomenon in the Response of Circle Cantilever Beam (원형 외팔보의 응답에서의 비선형 현상)

  • Kim, Myung-Gu;Lee, Heung-Shik;Cho, Chong-Du
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.445-451
    • /
    • 2005
  • This paper is the result of a experimental study about non-linear one to one modal coupling of a flexible circular cantilever beam which was transversely excited with harmonic excitation. It was proved that 2 order jumping in out of plane was caused by jump phenomenon in in-plane of flexible circular cantilever beam, because of non-linear coupling. In addition, cantilever beam showed hardening spring characteristics in in-plane and softening spring characteristics in out-of-plane.