• Title/Summary/Keyword: Out-of-Plane

Search Result 1,967, Processing Time 0.03 seconds

Reliability of analytical models for the prediction of out-of-plane capacity of masonry infills

  • Pasca, Monica;Liberatore, Laura;Masiani, Renato
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.765-781
    • /
    • 2017
  • The out-of-plane response of infill walls has recently gained a growing attention and has been recognised fundamental in the damage assessment of reinforced concrete and steel framed buildings subjected to seismic loads. The observation of damage after earthquakes highlighted that out-of-plane collapse of masonry infills may occur even during seismic events of low or moderate intensity, causing both casualty risks and unfavourable situations affecting the overall structural response. Even though studies concerning the out-of-plane behaviour of infills are not as many as those focused on the in-plane response, in the last decades, a substantial number of researches have been carried out on the out-of-plane behaviour of infills. In this study, the out-of-plane response is investigated considering different aspects. First, damages observed after past earthquakes are examined, with the aim of identifying the main parameters involved and the most critical configurations. Secondly, the response recorded in about 150 experimental tests is deeply examined, focusing on the influence of geometrical characteristics, boundary conditions, prior in-plane damage, presence of reinforcing elements and openings. Finally, different theoretical capacity models and code provisions are discussed and compared, giving specific attention to those based on the arching theory. The reliability of some of these models is herein tested with reference to experimental results. The comparison between analytically predicted and experimental values allows to appreciate the extent of approximation of such methods.

Quantitative Determination of Out-of-plane Displacement by Shearography (Shearography의 1차도함수로부터 면외변위의 정량적 추출)

  • Kim, Koung-Suk;Yoon, Hong-Seok;Park, Chan-Ju;Choi, Jung-Suk
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.772-776
    • /
    • 2004
  • The paper describes the quantitative determination of out-of-plane displacement from result of Shearogrpahy, which can measure the first-order partial derivative of out-of-plane displacement directly. However, the differential sensitivity of Shearography is related to the amount of shearing, which is manually adjustable in optical interferometer and affects the quantitative determination. The relationship between those is inspected by comparing ESPI with Shearography. From the result, the amount of shearing plays a modulation factor of out-of-plane displacement and small amount of shearing gives good agreement with out-of-plane displacement.

  • PDF

Torsional Vibration in Axisymmetric Out-of-plane Vibrations of an Annular Mindlin Plate (환상 민들린 평판의 축대칭 면외 진동에서의 비틀림 진동)

  • Kim, Chang-Boo;Lim, Jung-Ki
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.13-17
    • /
    • 2010
  • This presentation examines the characteristics of torsional vibration in axisymmetric out-of-plane vibrations of an annular Mindin plate. The out-of-plane vibration of circular or annular plates have been investigated since a long years ago by many researchers. When the classical Kirchhoff plate theory neglecting the effect of transverse shear deformation is applied to a thick plate, its out-of-plane natural frequencies are much different from reality. And so, since Minlin presented a plate theory considering the effect of rotary inertia and transverse shear deformation, many researches for the out-of-plane natural vibration of circular or annular Mindin plates have been performed. But almost all researchers missed the torsional vibration due to transverse shear deformation in axisymmetric out-of-plane vibrations of the circular or annular Mindin plate. Therefore, in this presentation, we verify the existence of torsional vibration of an annular plate and present the natural frequencies of an annular plate with free outer boundary surface.

  • PDF

Inelastic Out-of-plane Design of Parabolic Arches

  • Moon, Jiho
    • International Journal of Railway
    • /
    • v.8 no.2
    • /
    • pp.46-49
    • /
    • 2015
  • In this paper, improved out-of-plane design of parabolic arches was proposed based on the current design code. The arches resist general loading by a combination of axial compression and bending actions, and the interaction formula between two extreme cases of axial and bending actions is generally used for the design. Firstly, the out-of-plane buckling strength of arches in a pure axial compression and a pure bending were studied. Then, out-of-plane design of parabolic aches under general transverse loading was investigated. From the results, it can be found that the proposed design equations provided good prediction of out-of-plane strength for parabolic arches which satisfy the thresholds for deep arches, while proposed design equations overestimated the buckling load of shallow arches.

Analysis of the Effect of Contact Stiffness on the Out-of-plane Motion of a Disc Brake System using 2-DOE Model (2자유도 모텔을 이용한 디스크 브레이크의 면외 운동에 미치는 접촉강성의 영향 분석)

  • 신기홍;조용구;차병규;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.160-167
    • /
    • 2004
  • A two degree-of-freedom mathematical model is presented to investigate the friction mechanism of a disc brake system. A contact parameter is introduced to describe the coupling between the in-plane and the out-of-plane motions. The model with the contact parameter is considered under the assumption that the out-of-plane motion depends on the friction force along the in-plane motion. In order to describe the relationship between the friction force and the out-of plane motion, the dynamic friction coefficient is considered as a function of both relative velocity and normal farce. Using this friction law, a contact stiffness matrix along the normal direction can be obtained. The out-of-plane motion is then investigated by both the stability analysis and the numerical analysis for various parametric conditions. The results show that the stiffness parameters of the pad and the disc must be controlled at the same time. Also, the numerical analysis shows the existence of limit cycle caused by the effect of intermittent contact stiffness.

Simultaneous out-of-plane and in-plane vibration mitigations of offshore monopile wind turbines by tuned mass dampers

  • Zuo, Haoran;Bi, Kaiming;Hao, Hong
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.435-449
    • /
    • 2020
  • To effectively extract the vast wind resource, offshore wind turbines are designed with large rotor and slender tower, which makes them vulnerable to external vibration sources such as wind and wave loads. Substantial research efforts have been devoted to mitigate the unwanted vibrations of offshore wind turbines to ensure their serviceability and safety in the normal working condition. However, most previous studies investigated the vibration control of wind turbines in one direction only, i.e., either the out-of-plane or in-plane direction. In reality, wind turbines inevitably vibrate in both directions when they are subjected to the external excitations. The studies on both the in-plane and out-of-plane vibration control of wind turbines are, however, scarce. In the present study, the NREL 5 MW wind turbine is taken as an example, a detailed three-dimensional (3D) Finite Element (FE) model of the wind turbine is developed in ABAQUS. To simultaneously control the in-plane and out-of-plane vibrations induced by the combined wind and wave loads, another carefully designed (i.e., tuned) spring and dashpot are added to the perpendicular direction of each Tuned Mass Damper (TMD) system that is used to control the vibrations of the tower and blades in one particular direction. With this simple modification, a bi-directional TMD system is formed and the vibrations in both the out-of-plane and in-plane directions are simultaneously suppressed. To examine the control effectiveness, the responses of the wind turbine without control, with separate TMD system and the proposed bi-directional TMD system are calculated and compared. Numerical results show that the bi-directional TMD system can simultaneously control the out-of-plane and in-plane vibrations of the wind turbine without changing too much of the conventional design of the control system. The bi-directional control system therefore could be a cost-effective solution to mitigate the bi-directional vibrations of offshore wind turbines.

Quantitative Measurement of Out-of-plane Deformation Using Shearography (전단간섭계를 이용한 면외변형의 정량적 계측)

  • Chang, Ho-Seob;Jung, Sung-Wook;Kim, Kyoung-Suk;Jung, Hyun-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.131-137
    • /
    • 2007
  • Electronic Speckle Pattern Interferometry(ESPI) is a common method for measuring out-of-plane deformation and in-plane deformation and applied for vibration analysis and strain/stress analysis. However, ESPI is sensitive to environmental disturbance, which provide the limitation of industrial application. On the other hand, Shearography based on shearing interferometer which is insensitive to vibration disturbance can directly measure the first derivative of out-of-plane deformation. In this paper a technique that extract out-of-plane deformation from results of shearography by numerical processing is proposed and measurement results of ESPI and Shearoraphy are compared quantitatively.

Out-of-plane Vibration for an Axially Moving Membrane (축방향으로 이송되는 박막의 면외방향 진동)

  • Shin, Chang-Ho;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.198-206
    • /
    • 2006
  • The dynamic responses of both the in-plane and out-of-plane vibrations are investigated for an axially moving membrane. The equations of motion are derived for the moving membrane with no-slip boundary conditions by using the extended Hamilton principle. Based on the Galerkin method, the discretized equations of motion are derived. The generalized-time integration method is applied to compute the dynamic responses for the in-plane and out-of-plane motions. From the computed results, the responses are compared between the in-plane and out-of-plane vibrations. Furthermore. the effects of velocity and acceleration on the dynamic behaviours for displacements and stresses are presented.

Vibration Analysis of an Axially Moving Membrane with In-plane/Out-of-plane Deformations (면내/면외변형을 고려한 이송되는 박막의 진동해석)

  • Shin Changho;Chung Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.910-918
    • /
    • 2004
  • The vibration analysis of an axially moving membrane are investigated when the membrane has the two sets of in-plane boundary conditions, which are free and fixed constraints in the lateral direction. Since the in-plane stiffness is much higher than the out-of-plane stiffness, it is assumed during deriving the equations of motion that the in-plane motion is in a steady state. Under this assumption, the equation of out-of-plane motion is derived, which is a linear partial differential equation influenced by the in-plane stress distributions. After discretizing the equation by using the Galerkin method, the natural frequencies and mode shapes are computed. In particular, we put a focus on analyzing the effects of the in-plane boundary conditions on the natural frequencies and mode shapes of the moving membrane.

Combining in-plane and out-of-plane behaviour of masonry infills in the seismic analysis of RC buildings

  • Manfredi, V.;Masi, A.
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.515-537
    • /
    • 2014
  • Current seismic codes (e.g. the NTC08 Italian code and the EC8 European code) adopt a performance-based approach for both the design of new buildings and the assessment of existing ones. Different limit states are considered by verifying structural members as well as non structural elements and facilities which have generally been neglected in practice. The key role of non structural elements on building performance has been shown by recent earthquakes (e.g. L'Aquila 2009) where, due to the extensive damage suffered by infills, partitions and ceilings, a lot of private and public buildings became unusable with consequent significant socio-economic effects. Furthermore, the collapse of infill panels, particularly in the case of out-of-plane failure, represented a serious source of risk to life safety. This paper puts forward an infill model capable of accounting for the effects arising from prior in-plane damage on the out-of-plane capacity of infill panels. It permits an assessment of the seismic performance of existing RC buildings with reference to both structural and non structural elements, as well as of their mutual interaction. The model is applied to a building type with RC framed structure designed only to vertical loads and representative of typical Italian buildings. The influence of infill on building performance and the role of the out-of-plane response on structural response are also discussed.