• 제목/요약/키워드: Out-coupling

Search Result 626, Processing Time 0.025 seconds

The Bearing Strength of Connections Between Steel Coupling Beam and Reinforced Concrete Shear Walls

  • Yun, Hyun Do;Park, Wan Shin;Han, Min Ki;Kim, Sun Woo;Kim, Yong Chul;Hwang, Sun Kyung
    • Architectural research
    • /
    • v.7 no.1
    • /
    • pp.27-38
    • /
    • 2005
  • No specific guidelines are available for computing the bearing strength of connection between steel coupling beam and reinforced concrete shear wall in a hybrid wall system. There were carried out analytical and experimental studies on connection between steel coupling beam and concrete shear wall in a hybrid wall system. The bearing stress at failure in the concrete below the embedded steel coupling beam section is related to the concrete compressive strength and the ratio of the width of the embedded steel coupling beam section to the thickness of the shear walls. Experiments were carried out to determine the factors influencing the bearing strength of the connection between steel coupling beam and reinforced concrete shear wall. The test variables included the reinforcement details that confer a ductile behavior in connection between steel coupling beam and shear wall, i.e., the auxiliary stud bolts attached to the steel beam flanges and the transverse ties at the top and the bottom steel beam flanges. In addition, additional test were conducted to verify the strength equations of the connection between steel coupling beam and reinforced concrete shear wall. The proposed equations in this study were in good agreement with both our test results and other test data from the literature.

An Analysis on the Coupling of Korea's Economy and U.S. Economy through the Asset Market (자산시장을 통한 한국경제와 미국경제의 동조화 분석)

  • Kim, Jongseon
    • International Area Studies Review
    • /
    • v.15 no.3
    • /
    • pp.393-405
    • /
    • 2011
  • Three different models have been consecutively employed with the U.S. yield curve and the Korean composite stock price index, firstly to see the coupling between the economies of the U.S. and Korea, secondly to find out the time consumed completing the coupling, and lastly to figure out the impact of the recent U.S. financial crisis on this coupling. This study has, first of all, produced an empirical research outcome which proved the existence of coupling between two countries' economies. The direction of this coupling was consistent with the general expectation that when the yield spread between the U.S. 10-year Treasury Note and the U.S. 3-month Treasury Bill increased which often occurred with better prospects of U.S. economy, the asset price of emerging economies including Korea also rose reflecting the accompanying change in investment atmosphere in favor of risk. It has also found out that the degree of the coupling was maximized with a lag of one week. And finally the recent US financial crisis has been revealed to reduce the degree of the coupling by as much as half in a regression model with a dummy variable.

The Steel Coupling Beam-Wall Connections Strength

  • Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.135-145
    • /
    • 2006
  • In high multistory reinforced concrete buildings, coupled shear walls can provide an efficient structural system to resist horizontal force due to wind and seismic effects. Coupled shear walls are usually built over the whole height of the building and re laid out either as a series of walls coupled by beams and/or slabs or a central core structure with openings to accommodate doors, elevators walls, windows and corridors. A number of recent studies have focused on examining the seismic response of concrete, steel, and composite coupling beams. However, since no specific equations are available for computing the bearing strength of steel coupling beam-wall connections, it is necessary to develop such strength equations. There were carried out analytical and experimental studies to develop the strength equations of steel coupling beam-connections. Experiments were conducted to determine the factors influencing the bearing strength of the steel coupling beam-wall connection. The results of the proposed equations were in good agreement with both test results and other test data from the literature. Finally, this paper provides background for design guidelines that include a design model to calculate the bearing strength of steel coupling beam-wall connections.

Bearing Strength of Hybrid Coupled Shear Wall Connections

  • Park Wan-Shin;Yun Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1065-1074
    • /
    • 2005
  • Due to lack of information, current design methods to calculate bearing strength of connections are tacit about cases in which hybrid coupled walls have connection details of stud bolts and horizontal ties. In this study, analytical study was carried out to develop model for calculating the connections strength of embedded steel section. The bearing stress at failure in the concrete below the embedded steel coupling beam section is related to the concrete compressive strength and the ratio of the width of the embedded steel coupling beam section to the thickness of the shear walls. Experiments were carried out to determine the factors influencing the bearing strength of the connection between steel coupling beam and reinforced concrete shear wall. The test variables included the reinforcement details that confer a ductile behavior in connection between steel coupling beam and shear wall, i. e., the auxiliary stud bolts attached to the steel beam flanges and the transverse ties at the top and the bottom steel beam flanges. In addition, additional test were conducted to verify the strength equations of the connection between steel coupling beam and reinforced concrete shear wall. The results of the proposed equations in this study are in good agreement with both our test results and other test data from the literature.

Non-linear Phenomenon in the Response of Circle Cantilever Beam (원형 외팔보의 응답에서의 비선형 현상)

  • Kim, Myung-Gu;Lee, Heung-Shik;Cho, Chong-Du
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.445-451
    • /
    • 2005
  • This paper is the result of a experimental study about non-linear one to one modal coupling of a flexible circular cantilever beam which was transversely excited with harmonic excitation. It was proved that 2 order jumping in out of plane was caused by jump phenomenon in in-plane of flexible circular cantilever beam, because of non-linear coupling. In addition, cantilever beam showed hardening spring characteristics in in-plane and softening spring characteristics in out-of-plane.

Non-linear Phenomenon in the Response of Circle Cantilever Beam (원형 외팔보의 응답에서의 비선형 현상)

  • Kim, Myung-Gu;Lee, Heung-Shik;Cho, Chong-Du
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.129-133
    • /
    • 2004
  • This paper is the result of a experimental study about non-linear one to one modal coupling of a flexible circular cantilever beam which was transversely excited with harmonic excitation. It was proved that 2 order jumping in out of plane was caused by jump phenomenon in in-plane of flexible circular cantilever beam, because of non-linear coupling. In addition, cantilever beam showed hardening spring characteristics in in-plane and softening spring characteristics in out-of-plane.

  • PDF

The Development of Hydraulic-Coupling Experimental Apparatus Using Brake Load and Prediction of Torque Performance (브레이크 부하를 이용한 유체커플링 실험장치 개발과 토크 성능 예측)

  • 박용호;김기홍
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.100-107
    • /
    • 2000
  • The hydraulic couplings have been widely used in industries, automobile, and power-station drives including ships. A mathematical analysis by which the design and application of hydraulic couplings are made is used in conventional design formulae and general roto-dynamic theories. The fluid flow of hydraulic couplings can be considered to have two component, one circumferentially about the coupling axis, and the other passing fluid from the pump to the turbine in the plane of the coupling axis. Tests have been carried out on the full-scale production coupling. The performance test consists of taking measurement of torque of the fluid coupling for three different amount of working fluid inside with various loads to the output shaft. The purpose of this research is to construct the experimental test equipments and to establish a series of performance test for the domestically developed hydraulic couplings, and to obtain experimental results which can be used to improve the performance of the hydraulic coupling and to solve the practical problems confronted in operation.

  • PDF

Examination of Efficiency Based on Air Gap and Characteristic Impedance Variations for Magnetic Resonance Coupling Wireless Energy Transfer

  • Agcal, Ali;Bekiroglu, Nur;Ozcira, Selin
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.57-61
    • /
    • 2015
  • In this paper wireless power transmission system based on magnetic resonance coupling circuit was carried out. With the research objectives based on the mutual coupling model, mathematical expressions of optimal coupling coefficients are examined. Equivalent circuit parameters are calculated by Maxwell software, and the equivalent circuit was solved by Matlab software. The power transfer efficiency of the system was derived by using the electrical parameters of the equivalent circuit. System efficiency was analyzed depending on the different air gap values for various characteristic impedances. Hence, magnetic resonance coupling involves creating a resonance and transferring the power without radiating electromagnetic waves. As the air gap between the coils increased the coupling between the coils were weakened. The impedance of circuit varied as the air gap changed, affecting the power transfer efficiency.

Compliance Analysis for Effective handling of Peg-In/Out-Hole Tasks Using Robot Hands (로봇 손을 이용한 팩의 조립 및 분해 작업을 효율적으로 수행하기 위한 컴플라이언스 해석)

  • Kim, Byoung-Ho;Yi, Byung-Ju;Suh, Il-Hong;Oh, Sang-Rok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.777-785
    • /
    • 2000
  • This paper provides a guideline for the determination of compliance characteristics and the proper location of the compliance center in typical peg-in-hole and peg-out-hole tasks using hands. We first observe the fact that some of coupling stiffness elements cannot be planned arbitrarily. The given peg-in/out-hole tasks are classified into two contact styles. Then, we analyze concluded of the operational siffness matrix, which achieve the give peg-in/out-hole tasks effectively for each case. It is concluded that the location of the compliance center on the peg and the coupling stiffness element existing between the translational and the rotational direction play ompliance on the peg and the coupling siffness element existing between the translational and the rotational direction play important roles for successful peg-in/out-hole tasks. The analytic results verified through simulations.

  • PDF

A Study on the Torque Transmitting Capability of a Disk Coupling by Finite Element Analysis (유한요소해석을 이용한 디스크 커플링의 토크전달 능력에 대한 연구)

  • Seo, Won Sang;Kim, Sung Muk;Kim, Jong-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1171-1177
    • /
    • 2013
  • In this study, the torque transmitting capability of a flexible disk coupling was investigated. Flexible disc coupling is used to transmit power between two axes, and there exist mis-alignments such as angle of deviation and end play between two shafts. A disk is an important part in the flexible disk coupling because the disk has to transmit power between two mis-aligned shafts. To investigate the effect of mis-alignment on load carrying capacity, finite element analyses were carried out. Analyses were carried out for two types of disk; i.e., circular and square disks. The rotational and bending stiffness of disk plates was predicted to investigate the effect of mis-alignment on stress. As a result, it was shown that the mis-alignment can cause severe decrease in load-carrying capacity. And, the square disk showed better performance than the circular disk.