• Title/Summary/Keyword: Osteoporosis Rat

Search Result 124, Processing Time 0.03 seconds

Effects of Kanghwalsokdan-tang Gamibang Water Extract on Osteoclast Differentiation and Osteoblast Proliferation (강활속단탕가미방(羌活續斷湯加味方)이 파골세포 분화 및 조골세포 활성에 미치는 영향)

  • Jung, Eun-Hye;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.29 no.2
    • /
    • pp.66-82
    • /
    • 2016
  • Objectives : This study was conducted to evaluate the effect of Kanghwalsokdan-tang Gamibang water extract (KSG) on osteoporosis. Methods : RANKL-stimulated RAW 264.7 was used to evaluate inhibitory effect of KSG osteoclast differentiation and gene expression. We counted TRAP (+) multinucleated cells and measured TRAP activity and mRNA expressions of osteoclastogenesis-related genes (NFATc1, MITF, JNK1, cathepsin K, MMP-9) to figure out the effect of KSG on osteoclast. Osteoblastogenesis was also determined in rat calvarial cell. Alkaline phosphatase (ALP) activity, bone matrix protein and collagen synthesis were measured by using murine calvarial cell. Results : KSG inhibited the differentiation of osteoclast precursor cell and expression of genes related osteoclastogenesis like NAFTc1, MITF, c-fos, JNK1, Cathepsin K, MMP-9 and TRAP. KSG increased cell division and function of osteoblast separated from the skull of a rat and ALP synthesis, biosynthesis of bone matrix protein and collagen. Conclusions : Reviewing these results, KSG has efficacy on osteoclast inhibition and osteoblast activation. After further study, KSG will be able to apply for osteoporosis treatment and prevention.

Astragali Radix extract as a therapeutics on osteoporosis

  • Kim, Chung-Sook;Ha , Hye-Kyung;Song, Kye-Yong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.387.1-387.1
    • /
    • 2002
  • Aging and estrogen cleficiency after menopause induce bone loss and result in osteoporosis. This study was investigated effects of n-hexane fraction (Hx) extracted from Astragali Radix on osteoporosis with osteoblast-like cell line (MG-63 and Saos-2) and an ovariectomized (OVX) rat model. Proliferation of osteoblast-like cells. MG-63 and Saos-2. was tested with MTT and alkaline phosphatase (ALP) assays. (omitted)

  • PDF

Effect of Dietary Calcium Levels on the Reduction of Calcium Availability in Ovariectomized Osteoporosis Model Rats (난소절제 골다공증 모델 흰쥐의 체내 칼슘 이용성 저하에 대한 칼슘 섭취 수준의 효과)

  • 오주환
    • Journal of Nutrition and Health
    • /
    • v.26 no.3
    • /
    • pp.277-285
    • /
    • 1993
  • To investigate the effects of dietary calcium levels on the Ca metabolism in a rat model of ovariectomized osteoporosis, two studies were conducted. In Expt. I, five week-old femalc rats ovariectomized and fed a low Ca diet(0.06% Ca) for four weeks were compared with rats fed a normal (0.53% Ca) or low Ca diet under the sham-operated condition. Ovariectomized rats showed a significant increase in body weight and food intake. In rats fed the low Ca diet, a remarkable decrease was shown regardless of ovariectomy in serum Ca concentration, breaking force of bones, Ca and phopsphrus contents of bones, and apparent absorption and retention of Ca. Furthermore hte decrease of Ca contents of serum and bones in rats ovariectomized and fed the low Ca diet was similar to that in rats model of postmenopausal osteoporosis. In Expt. II, rats ovariectomized and fed on the low Ca diet for four weeks were divided into three groups, those given low Ca diet, normal Ca diet and high Ca diet(1.06%) respectively. The results indicated that supplementations of Ca at the intake level of 0.53% and 1.06% for 4 weeks tend to improve the relative Ca deficiency shown in experimental rat model of ovariectomized osteoporosis.

  • PDF

Time Course of Fibular Osteoporosis in Ovariectomized Rats (난소적출 랫트 비골의 시간경과에 따른 골다공증성 변화)

  • Bae, Chun-Sik;Park, Chang-Hyun;Uhm, Chang-Sub
    • Applied Microscopy
    • /
    • v.29 no.3
    • /
    • pp.377-382
    • /
    • 1999
  • Osteoporosis means a deficiency in the amount of bone tissue in the skeleton or part of the skeleton. Osteoporosis is a lesion, not a specific disease. 'Osteoporotic' describes the slate of a bone or skeleton at a given time. Osteoporosis may be diagnosed subjectively by visual appraisal, or objectively by measurement of radiographs, sawn bones, or microscopic sections. This study was carried out to make clear of the influence of ovariectomy on time course of fibular osteoporosis in rats. Seven weeks after ovariectomy, osteoporosis was evident, when the size of the bone marrow cavities significantly increased and the width from the bone marrow cavity and cortex significantly decreased than normal.

  • PDF

Effects of Dokhwalgisaengtang-gami Water Extract on Osteoclast Differentiation and Osteoblast Function in RANKL-induced RAW 264.7 Cell (독활기생탕가미방(獨活寄生湯加味方)이 파골세포 분화 억제와 조골세포 활성에 미치는 영향)

  • Je, Yun-Mo;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.26 no.2
    • /
    • pp.1-16
    • /
    • 2013
  • Objectives: This study was performed to evaluate the effect of Dokhwalgisaengtang-gami water extract(DGG) on osteoporosis. Methods: The osteoclastogenesis and gene expression were determined in RANKL-stimulated RAW 264.7 cell. And osteoblastogenesis was also determined in rat calvarial cell. Results: The results were summarized as followes. 1. DGG decreased the number of TRAP positive cell in RANKL-stimulated RAW 264.7 cell. 2. DGG inhibited TRAP activity in RANKL-stimulated RAW 264.7 cell. 3. DGG decreased the expression of NAFTc1, MITF in RANKL-stimulated RAW 264.7 cell. 4. DGG increased the expression of iNOS, COX-2, IL-6 in RANKL-stimulated RAW 264.7 cell. 5. DGG decreased the expression of cathepsin K, MMP-9, TRAP in RANKL-stimulated RAW 264.7 cell. 6. DGG increased cell proliferation of rat calvarial cell. 7. DGG increased ALP activity in rat calvarial cell 8. DGG increased bone matrix protein, collagen synthesis and nodule formation in rat calvarial cell. Conclusions: It is concluded that DGG might decrease the bone resorption resulted from decrease of osteoclast differentiation and it's related gene expression. And DGG might increase the bone formation resulted from increase of osteoblast function.

Effects of Dioscorea batatas on Estrogen-deficient Osteoporosis (Estrogen 결핍성(缺乏性) 골다공증(骨多孔症)에 미치는 산약(山藥) 추출물(抽出物)의 영향(影響))

  • Hwang Gwi-Seo;Lee Dae-Young
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.7 no.1
    • /
    • pp.55-66
    • /
    • 2003
  • Osteoporosis is characterized by bone loss and mobidity with osteoporotic fracture. This study was performed to evaluate the effect of on the bone mass and its related factors in estrogen-deficient animal model. The model rats of osteoporsis showed a significant decrease in bone density, bone ash density, calcium content of femur bone. At the 14th day after ovariectomy-surgery, rats were administered with DBE, extract of Dioscorea batatas, per orally, and continued for 10 weeks. And osteoporosis related parameters were determined to investigate the effect of DBE. Osteoporetic rats showed lower serum estrogen level, higher body weight than normal rats, and showed atrophy of uterine horns. DBE showed inhibitory effect on bone loss in osteoporetic condition, and reduced the increase of ALP activity and osteocalcin level in serum, and reduced the increase of OH-proline level in urine. But, DBE had no effect on cell proliferation and ALP activity in rat calvarial cell culture.

  • PDF

Effect of Samki-eum Gamibang Water Extract on Dexamethasone-treated Osteoblast (삼기음가미방(三氣飮加味方)이 Dexamethasone 처리 조골세포에 미치는 영향)

  • Lee, Hye-In;Jang, Sae-Byul;Yoo, Jeong-Eun;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.29 no.2
    • /
    • pp.15-28
    • /
    • 2016
  • Objectives : The purpose of this study is to evaluate the effect of water extract of Samki-eum Gamibang (SKG) on osteoblast proliferation in murine calvarial cells. Methods : The osteoblast separated from calvariae of murine was cultivated and evaluated the function of cell. After the addition of SKG on the culture medium, we investigated the effect of SKG on the cell viability, cell proliferation, alkaline phosphatase (ALP) activity, bone matrix protein synthesis and collagen synthesis of the cultivated osteoblast.Results : SKG increased the survival rate and proliferation of rat calvarial osteoblast. SKG increased ALP activity, bone matrix protein synthesis and collagen synthesis of rat calvarial osteoblast. Conclusions : This study suggests that SKG has effect on glucocorticoid-induced osteoporosis (GIO) resulting from increase of osteoblast function.

Therapeutic effects of 1α,25 dihydroxycholecalciferol on osteoporotic fracture in a rat model (랫드에서 1α,25 dihydroxycholecalciferol의 골다공증성 골절 치유효과)

  • Bae, Chun-sik
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.5
    • /
    • pp.974-985
    • /
    • 1999
  • Osteoporosis is defined as a decrease in bone mass that leads to an increased risk of fracture. The therapeutic effect of $1{\alpha}$,25 dihydroxycholecalciferol, the hormonal form of vitamin $D_3$ that mediates calcium translation in intestine and bone, on the healing process of fracture has still been controversial. These studies were designed to understand the healing process of normal fibular fracture, the osteoporotic changes after ovariectomy, and the therapeutic effects of $1{\alpha}$,25 dihydroxycholecalciferol on the osteoporotic fracture in rats. The simple transverse fractures of rat fibulae were produced with a rotating diamond saw. The changes of the biochemical and mechanical indices of rats were investigated. The mechanical study based on bending test revealed the healing of the fibular fracture in the 5th week after simple transverse fracture. The osteoporosis impaired more the healing of osteoporotic fibular fracture than normal non-osteoporotic fibular fracture. The healing process of osteoporotic fracture was facilitated by the treatment with $1{\alpha}$,25 dihydroxycholecalciferol, however, was delayed more than the healing process of normal fracture. The bone strength based on the bending test also confirmed this tendency. The bone strengths in the 5th week after fracture of normal bone, osteoporotic bone, and $1{\alpha}$,25 dihydroxycholecalciferol-treated osteoporotic bone were 75%, 41%, and 67%, respectively, in comparison with those of intact bone. In conclusion, $1{\alpha}$,25 dihydroxycholecalciferol was effective in promoting the osteoporotic fracture healing.

  • PDF

Effects of DSG on Osteoblastic Cell from Rat Calvariae in the Presence of Dexamethasone (단치소요산가미방이 Dexamethasone 처리한 랫드의 두개골 세포에 미치는 영향)

  • Park, Jong-Hyeong;Hwang, Gwi-Seo
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.10 no.2
    • /
    • pp.19-30
    • /
    • 2006
  • It is well known that glucocorticoid may induce osteoporosis as its side effect in long-term therapy. The inhibition of osteoblast by glucocorticoid is also recognized as its action mechanism of decreased bone formation. In this study, the effect of DSG, Danchisoyosangamibang, on the differentiation and function of osteoblastic cells was investigated. The osteoblastic cells were isolated from rat calvariae using collagenase treatment. The cell counting, enzyme activity assay, MTT assay, collagen content assay were done to determine the cell proliferation, intracellular alkaline phosphatase (ALP) activity, bone martrix production, and cell apoptosis. DSG enhanced the cell proliferation after the culture for 10 days. ALP activity and total protein synthesis, and intracelluar collagen synthesis were increased time dependently when the cells were treated with DSG in the presence of dexamethasone. And, DSG restored calvarial cell function decreased by dexamethasone.

  • PDF

Effect of Lonicerae Japonicae Flos on Bone Density in Ovariectomized Rat Model of Osteoporosis (난소 적출 흰쥐 골다공증 모델에서 금은화(金銀花)가 골밀도 증가에 미치는 효과)

  • Lee, SungYub;Kim, Minsun;Hong, SooYeon;Kim, Jae-Hyun;Kim, Hongsik;Lee, Chungho;Jung, Hyuk-Sang;Sohn, Youngjoo
    • The Korea Journal of Herbology
    • /
    • v.36 no.5
    • /
    • pp.81-91
    • /
    • 2021
  • Objectives : Osteoporosis is a systemic skeletal disease that decreases bone density and increases the risk of fractures. Bisphosphonates and SERMs are mainly used to treat osteoporosis, but, long-term use increases the risk of side effects such as jaw bone necrosis and breast cancer. Therefore, it is necessary to develop a therapeutic agent for a natural product with few side effects. Water extract of Lonicerae Japonicae Flos (wLF) was mainly found to have anti-cancer and anti-inflammatory effects. However, the effect of wLF on osteoporosis has not been elucidated. Therefore, this experiment investigated the effect of wLF on osteoclasts, osteoblasts and osteoporosis models. Methods : In order to study the effect of wLF on osteoporosis, the OVX-induced rat model was used for in vivo study. After 8 weeks, we measured body weight, uterine weight, liver weight, femur weight, bone density, trabecular area and tibia ash weight. To determine the effect of wLF on osteoclast differentiation, we measured the number of TRAP-positive cells and TRAP activity. To examine the effect of wLF on the expression of osteoblast-related genes, we measured the mRNA expression of alkaline phosphatase (ALP, Alpl) and osteocalcin (OCN, Bglap2). Results : In vivo experiment, wLF inhibited the reduction of femur weight, trabecular area, bone density and tibia ash weight. In vitro experiment, wLF had no significant effect on osteoclast differentiation. However, wLF increased the mRNA expression of Alpl and Bglap2 in MC3T3-E1 cell. Conclusions : This result suggested that wLF may be used for the treatment and prevention of postmenopausal osteoporosis.