• Title/Summary/Keyword: Osteogenic Marker

Search Result 41, Processing Time 0.026 seconds

Effect of Chitosan on Expression of Osteogenic Genes during the Healing of Rat Extraction Socket

  • Youn, Gap-Hee;Jung, Seunggon;Lee, Tae-Hoon;Kook, Min-Suk;Park, Hong-Ju;Oh, Hee-Kyun
    • Journal of Korean Dental Science
    • /
    • v.7 no.2
    • /
    • pp.58-65
    • /
    • 2014
  • Purpose: This study was performed to evaluate the effect of chitosan combined with absorbable gelatin compressed sponge on the expression of osteoblastic differentiation marker genes during the healing of rat extraction socket. Materials and Methods: Twenty-four male Wistar rats were used. In control group, the extraction socket was closed with suture. In chitosan group, the socket was filled with chitosan combined with Gelfoam (Pharmacia & Upjohn Co.) and closed with suture. In each group, the animals were sacrificed at 3 days, 1 week, 2 weeks, and 4 weeks postoperatively. The expression of osteoblastic differentiation marker genes, including BSP, OCN, Runx2, and Col1 were quantified by real-time polymerase chain reaction. Result: Compared to control group, the mRNA level of BSP in chitosan group increased significantly at 2 weeks after extraction and the level of OCN decreased significantly at 3 days and 4 weeks after extraction (P<0.05). The mRNA levels of OCN, Runx2, and Col1 in chitosan group increased slightly at 2 weeks after extraction, but there was no statistical difference between groups. Conclusion: The results indicate that chitosan has some effects on the expression of osteogenic genes during the healing of extraction sockets.

Inhibitory Effect of Fermented Spanish Extract on Inorganic phosphate-induced Vascular Calcification in ex vivo Aortic Rings (발효 시금치 추출물의 무기인산염에 의해 유도된 혈관 석회화 저해 효과)

  • Lee, Sang Hee;Hong, Sun Mi;Sung, Mi Jeong
    • Journal of the Korean Society of Food Culture
    • /
    • v.37 no.3
    • /
    • pp.248-255
    • /
    • 2022
  • Spinach (Spinacia oleracea L.), a green leafy vegetable, is well known as a functional food due to its biological activities. Vascular calcification is associated with several disease conditions including atherosclerosis, diabetes, and chronic kidney disease (CKD), and is known to raise the risk of cardiovascular diseases related morbidity and mortality. However, there are no previous studies that have investigated the effects of fermented spinach exract (FSE) against aortic and its underlying mechanisms. Therefore, this study investigated the effects and action of possible mechanisms of FSE on inorganic phosphate (PI)-induced vascular calcification in ex vivo mouse aortic rings. PI increased vascular calcification through calcium deposition in ex vivo aortic rings. FSE inhibited calcium accumulation and osteogenic key marker, runt-related transcription factor 2 (Runx2), and bone Morphogenetic Protein 2 (BMP-2) protein expression in ex vivo aortic rings. And, FSE inhibited PI-induced extracellular signal-regulated kinase (ERK) and p38 phosphorylation in ex vivo aortic rings. These results show that FSE can prevent vascular calcification which may be a crucial way for the prevention and treatment of vascular disease association with vascular calcification.

THE EFFECT OF FGF-MEDIATED FGFR SIGNALING ON THE EARLY MORPHOGENESIS AND MAINTENANCE OF THE CRANIAL SUTURE (FGF-mediated FGFR signaling이 두개봉합부의 초기형태발생 및 유지기전에 미치는 영향)

  • Sue, Kyung-Hwan;Park, Mi-Hyun;Ryoo, Hyun-Mo;Nam, Soon-Hyeun;Kim, Young-Jin;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.4
    • /
    • pp.652-663
    • /
    • 1999
  • Craniosynostosis, the premature fusion of cranial sutures, presumably involves disturbance of the interactions between different tissues within the cranial sutures. Interestingly, point mutaions in the genes encoding for the fibroblast growth factor receptors(FGFRs), especially FGFR2, cause various types of human craniosynostosis syndromes. To elucidate the function of these genes in the early morphogenesis of mouse cranial sutures, we first analyzed by in situ hybridization the expression of FGFR2(BEK) and osteopontin, an early marker of osteogenic differentiation, in the sagittal suture of calvaria during embryonic(E15-E18) and postnatal stage(P1-P3). FGFR2(BEK) was intensely expressed in the osteogenic fronts, whose cells undergo differentiation into osteoprogenitor cells that ultimately lay down the bone matrix. Osteopontin was expressed throughout the parietal bones excluding the osteogenic fronts, the periphery of the parietal bones. To further examine the role of FGF-mediated FGFR signaling in cranial suture, we did in vitro experiments in E15.5 mouse calvarial explants. Interestingly, implantation of FGF2 soaked beads onto both the osteogenic fronts and mid-mesenchyme of sagittal suture after 36 hours organ culture resulted in the increase of the tissue thickness and cell number around FGF2 beads, moreover FGF4-soaked beads implanted onto the osteogenic fronts stimulated suture closure due to an accelerated bone growth, compared to FGF4 beads placed onto mid-mesenchyme of sagittal suture and BSA control beads. In addition FGF2 induced the ectopic expression of osteopontin and Msx1 genes. Taken together, these data indicate that FGF-mediated FGFR signaling has a important role in regulating the cranial bone growth and maintenance of cranial suture, and suggest that FGF-mediated FGFR signaling is involved in regulating the balance between the cell proliferation and differentiation through inducing the expression of osteopontin and Msx1 genes.

  • PDF

Effects of Watercress Containing Rutin and Rutin Alone on the Proliferation and Osteogenic Differentiation of Human Osteoblast-like MG-63 Cells

  • Hyun, Hanbit;Park, Heajin;Jeong, Jaehoon;Kim, Jihye;Kim, Haesung;Oh, Hyun Il;Hwang, Hye Seong;Kim, Ha Hyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.4
    • /
    • pp.347-352
    • /
    • 2014
  • Most known osteoporosis medicines are effective for bone resorption, and so there is an increasing demand for medicines that stimulate bone formation. Watercress (N. officinale R. Br.) is widely used as a salad green and herbal remedy. This study analyzed a watercress extract using ultra-performance liquid chromatography/mass spectrometry, and identified a rutin as one of its major constituents. Osteogenic-related assays were used to compare the effects of watercress containing rutin (WCR) and rutin alone on the proliferation and differentiation of human osteoblast-like MG-63 cells. The reported data are expressed as percentages relative to the control value (medium alone; assigned as 100%). WCR increased cell proliferation to $125.0{\pm}4.0%$ ($mean{\pm}SD$), as assessed using a cell viability assay, and increased the activity of alkaline phosphatase, an early differentiation marker, to $222.3{\pm}33.8%$. In addition, WCR increased the expression of collagen type I, another early differentiation marker, to $149.2{\pm}2.8%$, and increased the degree of mineralization, a marker of the late process of differentiation, to $122.9{\pm}3.9%$. Rutin alone also increased the activity of ALP (to $154.4{\pm}12.2%$), the expression of collagen type I (to $126.6{\pm}6.2%$), and the degree of mineralization (to $112.3{\pm}5.0%$). Daidzein, which is reported to stimulate bone formation, was used as a positive control; the effects of WCR on proliferation and differentiation were significantly greater than those of daidzein. These results indicate that WCR and rutin can both induce bone formation via the differentiation of MG-63 cells. This is the first study demonstrating the effectiveness of either WCR or rutin as an osteoblast stimulant.

Induction of Effective Osteogenesis by Mesenchymal Stem Cells from the Human Subchondral Bone (사람 연골하골 중간엽 줄기세포의 효율적인 골형성 유도)

  • Huh, Jeong-Eun;Cho, Yoon-Je;Yoo, Myung-Chul;Baek, Yong-Hyeon;Lee, Jae-Dong;Choi, Do-Young;Park, Dong-Suk
    • Journal of Acupuncture Research
    • /
    • v.23 no.5
    • /
    • pp.69-77
    • /
    • 2006
  • Background : Mesenchymal stem cells (MSCs) are present in most of the tissue matrix, taking part in their regeneration when injury or damage occurs. The aim of this study was to investigate the presence of cells with pluripotential characteristics in human subchondral bone and the capacity of these cells to differentiate to osteoblast. Methods : Human subchondral bone were digested with collagenase. Isolated cells were cultured with a-MEM, 15% FBS, 10-8M dexamethasone and 50 ng/mL ascoric acid. Cells from 0 day(isolated cells), 7 day (first subculture) and 14 days (third subculture) were used to carry out phenotypic characterization experiments flowcytometry analysis with 11 monoclonal antibodies) and osteogenic differentiation experiments. Osteogenic differentiation of cells was assessment by quantification of bone extracellular matrix components by following analysis: alkaline phosphatase(ALP) stains to detect ALP activity, RT-PCR and western blot to detect osteocalcin (OCN), osteopontin (OPN) and type I collagen(Col I), and Alizarin red stains to detect calcium deposition. Results : Flowcytometry analyses showed that in our population more than 98% of cells were positive for MSC markers: SH-2(CD105, 99%), CD29 (95%), CD73 (95%). Cells were negative for hematopoietic markers (CD11b, CD34, and CD45). Furthermore, cells showed positive stain to multipotent markers such as CDl17 (c-kit) (15.1%), and CD166 (74.9%), and cell adhesion molecules such as CD54 (78.1%) and CD106 (63.5%). The osteogenic specific marker analyses showed that the culture of these cells for 7 and 14 days stimulates ALP, OCN, OPN and Col I synthesis by RT-PCR and Western blot analysis. Also, after 14 days in the culture of MSCs induces mineralization by Arizarin red stain. Conclusion : In this work, we demonstrated a new and efficient method for osteoblastic differentiation of human subchondral bone stem cells. As MSCs takes part in reparative processes of adult tissues, these cells could play an important role in osteogenesis.

  • PDF

$TNF{\alpha}$ Increases the Expression of ${\beta}2$ Adrenergic Receptors in Osteoblasts

  • Baek, Kyung-Hwa;Lee, Hye-Lim;Hwang, Hyo-Rin;Park, Hyun-Jung;Kwon, A-Rang;Qadir, Abdul S.;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.36 no.4
    • /
    • pp.173-178
    • /
    • 2011
  • Tumor necrosis factor alpha ($TNF{\alpha}$) is a multifunctional cytokine that is elevated in inflammatory diseases such as atherosclerosis, diabetes and rheumatoid arthritis. Recent evidence has suggested that ${\beta}2$ adrenergic receptor (${\beta}2AR$) activation in osteoblasts suppresses osteogenic activity. In the present study, we explored whether $TNF{\alpha}$ modulates ${\beta}AR$ expression in osteoblastic cells and whether this regulation is associated with the inhibition of osteoblast differentiation by $TNF{\alpha}$. In the experiments, we used C2C12 cells, MC3T3-E1 cells and primary cultured mouse bone marrow stromal cells. Among the three subtypes of ${\beta}AR$, ${\beta}2$ and ${\beta}3AR$ were found in our analysis to be upregulated by $TNF{\alpha}$. Moreover, isoproterenol-induced cAMP production was observed to be significantly enhanced in $TNF{\alpha}$-primed C2C12 cells, indicating that $TNF{\alpha}$ enhances ${\beta}2AR$ signaling in osteoblasts. $TNF{\alpha}$ was further found in C2C12 cells to suppress bone morphogenetic protein 2-induced alkaline phosphatase (ALP) activity and the expression of osteogenic marker genes including Runx2, ALP and osteocalcin. Propranolol, a ${\beta}2AR$ antagonist, attenuated this $TNF{\alpha}$ suppression of osteogenic differentiation. $TNF{\alpha}$ increased the expression of receptor activator of NF-${\kappa}B$ ligand (RANKL), an essential osteoclastogenic factor, in C2C12 cells which was again blocked by propranolol. In summary, our data show that $TNF{\alpha}$ increases ${\beta}2AR$ expression in osteoblasts and that a blockade of ${\beta}2AR$ attenuates the suppression of osteogenic differentiation and stimulation of RANKL expression by $TNF{\alpha}$. These findings imply that a crosstalk between $TNF{\alpha}$ and ${\beta}2AR$ signaling pathways might occur in osteoblasts to modulate their function.

Interleukin-32 Gamma as a New Face in Inflammatory Bone Diseases

  • Lee, Eun-Jin;Choi, Bongkun;Hwang, Eui-Seung;Chang, Eun-Ju
    • Journal of Rheumatic Diseases
    • /
    • v.24 no.1
    • /
    • pp.14-20
    • /
    • 2017
  • Interleukin-32 (IL-32), a recently identified pro-inflammatory cytokine, is involved in the pathogenesis and progression of infections, cancer, chronic inflammation, and autoimmune disease. IL-32γ is the most active isoform in cell death and cell activation among nine distinct isoforms of IL-32. IL-32γ potentiates both osteogenic and osteoclastogenic capacities, and is critical in the coupling of bone resorption and bone formation for maintenance of bone homeostasis. IL-32γ is strongly associated with inflammatory bone disorders such as rheumatoid arthritis, ankylosing spondylitis, and osteoporosis. In this review, we summarize current research on the role of IL-32γ in inflammatory bone disorders, highlighting this cytokine as a novel target for prognostic marker and control of these diseases.

GATA4 negatively regulates osteoblast differentiation by downregulation of Runx2

  • Song, Insun;Kim, Kabsun;Kim, Jung Ha;Lee, Young-Kyoung;Jung, Hyun-Jung;Byun, Hae-Ok;Yoon, Gyesoon;Kim, Nacksung
    • BMB Reports
    • /
    • v.47 no.8
    • /
    • pp.463-468
    • /
    • 2014
  • Osteoblasts are specialized mesenchymal cells that are responsible for bone formation. In this study, we examine the role of GATA4 in osteoblast differentiation. GATA4 was abundantly expressed in preosteoblast cells and gradually down-regulated during osteoblast differentiation. Overexpression of GATA4 in osteoblastic cells inhibited alkaline phosphatase activity and nodule formation in osteogenic conditioned cell culture system. In addition, overexpression of GATA4 attenuated expression of osteogenic marker genes, including Runx2, alkaline phosphatase, bone sialoprotein, and osteocalcin, all of which are important for osteoblast differentiation and function. Overexpression of GATA4 attenuated Runx2 promoter activity, whereas silencing of GATA4 increased Runx2 induction. We found that GATA4 interacted with Dlx5 and subsequently decreased Dlx5 binding activity to Runx2 promoter region. Our data suggest that GATA4 acts as a negative regulator in osteoblast differentiation by downregulation of Runx2.

Effect of Acer tegmentosum Maxim. extract on differentiation of osteoblastic Primary calvarial osteoblasts cells (조골세포의 분화에 산겨릅나무 추출물이 미치는 영향)

  • Oh, Tae Woo;Shim, Ki-Shuk;Kim, Kwang-Youn;Cho, Won-Kyung;Park, Kwang Il;Ma, Jin Yeul
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.527-536
    • /
    • 2017
  • Objectives : The present study, to confirm the osteoblast differentiation effects of Acer tegmentosum Maxim. (AT) extract. Methods : In this experiment, cell viability, Alizarin red S assay, and Alkaline phosphatase (ALP) activity with AT extract (50, $100{\mu}g/m{\ell}$). Also, we studied the expression of differentiation regulator with AT extract in primary calvarial osteoblasts cells (pOB). Results : As a result of AT treatment, we determined that AT extract stimulates ALP activity and alizarin red activities in the pOB cells for mineralization for 18 days. Moreover, these factors increasing osteogenic markers such as Runt-related transcription factor2 ($Run{\times}2$), osteocalcin (OC), osteopontin, osterix, smad1, smad5, activating transcription factor4 (ATF4) and collagen type I alpha 1. Conclusions : These results indicate that AT extract have effect on bone through the promotion of osteoblastic differentiation, suggesting that it could be used for the treatment of bone diseases.

Functional analysis of Bombyx mori Decapentaplegic gene for bone differentiation in a mammalian cell

  • Park, Seung-Won;Goo, Tae-Won;Choi, Gwang-Ho;Kang, Seok-Woo;Kim, Sung-Wan;Kim, Seong-Ryul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.1
    • /
    • pp.159-165
    • /
    • 2013
  • Bone morphogenetic proteins (BMPs) belong to the transforming growth factor (TGF-${\beta}$) superfamily and are involved in osteoblastic differentiation. The largest TGF-${\beta}$ superfamily subgroup shares genetic homology with human BMPs (hBMPs) and silkworm decapentaplegic (dpp). In addition, hBMPs are functionally interchangeable with Drosophila dpp. Bombyx mori dpp may induce bone formation in mammalian cells. To test this hypothesis, we synthesized the 1,285-base pairs cDNA of full-length B. mori dpp using total RNAs obtained from the fat body of 3-day-old of the $5^{th}$ instar larvae and cloned the cDNA into the pCEP4 mammalian expression vector. Next, B. mori dpp was expressed in C3H10T1/2 cells. The target cells transfected with the pCEP4-Bm dpp plasmid showed biological functions similar to those of osteogenic differentiation induction growth factors such as hBMPs. We determined the relative mRNA expression rates of Runt-related transcription factor 2 (RUNX2), osterix, osteocalcin, and alkaline phosphatase (ALP) to validate the osteoblast-specific differentiation effects of B. mori dpp by performing quantitative real-time RT-PCR. Interestingly, mRNA expression levels of the 3 marker genes except RUNX2, in cells expressing B. mori dpp were much higher than those in control cells and C3H10T1/2 cells transfected with pCEP4. These results suggested that B. mori dpp signaling regulates osterix expression during osteogenic differentiation via RUNX2-independent mechanisms.