• Title/Summary/Keyword: Osteocytes

Search Result 53, Processing Time 0.021 seconds

Predicting the Role of Osteal Macrophages and Osteocytes in Bone Tissue Network Using a Mathematical Modeling (수학적 모델링을 이용한 골조직 세포 네트워크에서 Osteal Macrophage와 골세포의 역할 예측)

  • Hwang, Soo-Jeong
    • Journal of dental hygiene science
    • /
    • v.18 no.2
    • /
    • pp.130-135
    • /
    • 2018
  • The aim of this study was to investigate the role of osteal macrophages (osteomac) and osteocytes in bone remodeling using a mathematical model. We constructed the bone system with pre-osteoblasts, osteoclasts, osteocytes, and osteomac. Each link of the parameters and ordinary differential equations followed the Graham's model in 2013 except for the parameters of osteomac signaling and osteocytes signaling to link preosteoblasts and osteoblasts. We simulated the changes in each cell and bone volume according to the changes in the parameters of osteomac signaling and osteocytes signaling. The results showed bone volume was unstable and decreased gradually when the effectiveness of osteocytes and osteomac dropped below a certain level. When the parameters of osteomac signaling and osteocytes signaling to link preosteoblasts and osteoblasts had a value less than 1, bone volume increased with the increase in the parameter of osteomac signaling to link preosteoblasts and osteoblasts. Moreover, although the parameter of osteocytes signaling to link preosteoblasts and osteoblasts, increased in case of a small parameter of osteomac signaling, bone volulme decreased. If the parameters of osteomac signaling to link preosteoblasts and osteoblasts were over a certain level, bone volume was positively maintained, despite the parameter of osteocyte signaling to link preosteoblasts and osteoblasts. We suggested the osteomac may affect bone remodeling and may play an important role in bone cell network.

The Effects of Mechanical Strain on Bone Cell Proliferation and Recruitment Induced by Osteocytes

  • Ko, Seong-Hee;Lee, Jiy-Hye;Kim, So-Hee
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.179-186
    • /
    • 2008
  • Several lines of evidence suggest that osteocytes play a critical role in bone remodeling. Both healthy and apoptotic osteocytes can send signals to other bone surface cells such as osteoblasts, osteoclasts, osteoclast precursors, and bone lining cells through canalicular networks. Osteocytes responding to mechanical strain may also send signals to other cells. To determine the role for osteocytes an mechanical strain in bone remodeling, we examined the effects of fluid flow shear stress on osteoclast precursor cell and osteoblast proliferation and recruitment induced by osteocytes. In addition, the effects of fluid flow shear stress on osteocyte M-CSF, RANKL, and OPG mRNA expression were also examined. MLO-Y4 cells were used as an in vitro model for osteocytes, RAW 264.7 cells and MOCP-5 cells as osteoclast precursors, and 2T3 cells as osteoblasts. MLO-Y4 cells conditioned medium (Y4-CM) was collected after 24h culture. For fluid flow experiments, MLO-Y4 cells were exposed to 2h of pulsatile fluid flow (PFF) at 2, 4, 8, $16{\pm}0.6\;dynes/cm^2$ using the Flexcell $Streamer^{TM}$ system. For proliferation assays, MOCP-5, RAW 264.7, and 2T3 cells were cultured with control media or 10-100% Y4 CM. Cells were cultured for 3d, and then cells were counted. RAW 264.7 and 2T3 cell migration was assayed using transwells with control media or 10-100% Y4-CM. M-CSF, RANKL and OPG in MLO-Y4 mRNA expression was determined by semiquantitative RT-PCR. Y4-CM increased osteoclast precursor proliferation and migration, but decreased 2T3 cell proliferation and migration. CM from MLO-Y4 cells exposed to PFF caused decreased RAW 267.4 cell proliferation and migration and 2T3 migration compared to control Y4-CM. However, Y4-CM from cells exposed to PFF had no effect on 2T3 osteoblastic cell proliferation. PFF decreased RNAKL mRNA and increased OPG mRNA in MLO-Y4 cells compared to control(without PFF). PFF had no effect on M-CSF mRNA expression in MLO-Y4 cells. These results suggest that osteocytes can regulate bone remodeling by communication with osteoclast precursors and osteoblasts and that osteocytes can communicate mechanical signals to other cells.

Hypoxia Inducible Factor-$1{\alpha}$ Directly Induces the Expression of Receptor Activator of Nuclear Factor-${\kappa}B$ Ligand in MLO-Y4 Osteocytes

  • Baek, Kyunghwa;Park, Hyun-Jung;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.40 no.1
    • /
    • pp.19-25
    • /
    • 2015
  • Osteocytes may function as mechanotransducers by regulating local osteoclastogenesis. Reduced availability of oxygen, i.e. hypoxia, could occur during disuse, bone development, and fracture. Receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) is an osteoblast/stromal cell derived essential factor for osteoclastogenesis. The hypoxia induced osteoclastogenesis via increased RANKL expression in osteoblasts was demonstrated. Hypoxic regulation of gene expression generally involves activation of the hypoxia-inducible factor (HIF) transcription pathway. In the present study, we investigated whether hypoxia regulates RANKL expression in murine osteocytes and HIF-$1{\alpha}$ mediates hypoxia-induced RANKL expression by transactivating RANKL promoter, to elucidate the role of osteocyte in osteoclastogenesis in the context of hypoxic condition. The expression levels of RANKL mRNA and protein, as well as hypoxia inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) protein, were significantly increased in hypoxic condition in MLO-Y4s. Constitutively active HIF-$1{\alpha}$ alone significantly increased the levels of RANKL expression in MLO-Y4s under normoxic conditions, whereas dominant negative HIF-$1{\alpha}$ blocked hypoxia-induced RANKL expression. To further explore to find if HIF-$1{\alpha}$ directly regulates RANKL transcription, a luciferase reporter assay was conducted. Hypoxia significantly increased RANKL promoter activity, whereas mutations of putative HIF-$1{\alpha}$ binding elements in RANKL promoter prevented this hypoxia-induced RANKL promoter activity in MLO-Y4s. These results suggest that HIF-$1{\alpha}$ mediates hypoxia-induced up-regulation of RANKL expression, and that in osteocytes of mechanically unloaded bone, hypoxia enhances osteoclastogenesis, at least in part, via an increased RANKL expression in osteocytes.

In Vitro Differentiation of Mesenchymal Progenitor Cells Derived from Porcine Umbilical Cord Blood

  • Kumar, Basavarajappa Mohana;Yoo, Jae-Gyu;Ock, Sun-A;Kim, Jung-Gon;Song, Hye-Jin;Kang, Eun-Ju;Cho, Seong-Keun;Lee, Sung-Lim;Cho, Jae-Hyeon;Balasubramanian, Sivasankaran;Rho, Gyu-Jin
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.343-350
    • /
    • 2007
  • Mesenchymal stem/progenitor cells (MPCs) were isolated from porcine umbilical cord blood (UCB) and their morphology, proliferation, cell cycle status, cell-surface antigen profile and expression of hematopoietic cytokines were characterized. Their capacity to differentiate in vitro into osteocytes, adipocytes and chondrocytes was also evaluated. Primary cultures of adherent porcine MPCs (pMPCs) exhibited a typical fibroblast-like morphology with significant renewal capacity and proliferative ability. Subsequent robust cell growth was indicated by the high percentage of quiescent (G0/G1) cells. The cells expressed the mesenchymal surface markers, CD29, CD49b and CD105, but not the hematopoietic markers, CD45 and CD133 and synthesized hematopoietic cytokines. Over 21 days of induction, the cells differentiated into osteocytes adipocytes and chondrocytes. The expression of lineage specific genes was gradually upregulated during osteogenesis, adipogenesis and chondrogenesis. We conclude that porcine umbilical cord blood contains a population of MPCs capable of self-renewal and of differentiating in vitro into three classical mesenchymal lineages.

IMMUNOHISTOCHEMICAL STUDY FOR THE EXPRESSION OF BMP-2/4 ON THE HEALING PROCESS IN THE MANDIBULAR BONE DEFECT OF RAT (백서의 하악골 결손부 치유시 골형성단백질 2/4의 발현에 관한 연구)

  • Choi, Jae-Yong;Lee, Sang-Chull
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.4
    • /
    • pp.325-336
    • /
    • 2000
  • Bone morphogenetic protein-2/4 are members of Transforming Growth Factor-$\beta$(TGF-$\beta$) superfamily and they may induce formation of cartilage and bone in vivo. This study was performed to investigate the cellular target and period of action of BMP-2/4 and understanding of actions of BMP-2/4 at cellular level. The appearance of BMP-2/4 during healing of mandibular and periodontal defect in rat was evaluated immunohistochemically. 40 Sprague-Dawley strain white male rats, each weighing about 300gm were used. Bony defect was performed in the mandible and they were sacrificed at the day of 3rd, 10th, 20th, 30th after operation. The specimens were harvested and examined histologically and immunohistochemically by localization of anti-BMP-2/4. The results were as follows: 1. Woven bone was observed at 10th day and perfect healing of defect with compact bone and periodontal ligment space at 30th day. 2. Osteoprogenitor cells, osteoblastic cells and periosteum were positive reaction to immunohistochemical stain at 10th day. 3. Cells of bone marrow space and surface cells of osteocytes and cementoblasts were positive reaction to immunohistochemical stain at 20th day. 4. Newly formed osteocytes and cementocytes were positive reaction to immunohistochemical stain at 30th day. From the above findings, we could conclude that BMP-2/4 acted significant roles as factors of induction, proliferation and differentiation during bone healing process.

  • PDF

A COMPARATIVE STUDY OF EFFECTS OF THE BIOCERAMICS ON HEALING PROCESSES OF THE ALVEOLAR BONE DEFECTS IN DOGS (수종의 합성골이식재가 성견 치조골 결손의 치유에 미치는 영향에 관한 비교연구)

  • Park, Yang-Jae;Kwon, Young-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.3
    • /
    • pp.422-441
    • /
    • 1993
  • The purpose of this study was to compare effects of the bioceramics on healing processes of the alveolar bone defects in dogs. Five adult dogs aged 1 to 2 years were used in this study. Experimental alveolar bone defects were created surgically with a #1/2 round bur at the furcation area of the buccal surface of the mandibular 3rd, 4th premolars and 1st molar. Fifteen experimental alveolar bone defects were devided into three groups according to the type of graft materials. The groups were as follows : 1) flap operation with dense hydroxyapatite( DHA group ) 2) flap operation with porous hydroxyapatite( PHA group ) 3) flap operation with natural coral ( NC group ) At 1, 2, 4, 6, and 12 weeks, dogs were serially sacrificed and specimens were prepared with Hematoxylin-Eosin stain and Mallory stain for light microscopic evaluation. The results of this study were as follows : 1. In every group, inflammatory cell infiltrations were seen at 1st weeks due to surgical trauma, however inflammatory response owing to graft materials were not seen. 2. In every group, the appearance of connective tissue around graft materials was loosely formed at the initial stages, however the connective tissue was densely formed at 2 weeks. 3. The presence of osteocytes were observed at 2 weeks in the natural coral group, however the osteocytes were appeared at 6weeks in the dense hydroxyapatite group. 4. A new bone was formed from the base and walls of the defect and gradually expanded toward the graft materials. 5. A resorption of the natural coral occurred irregularly at the periphery of the material, therefore the size and shape of the natural coral were reduced at 6 weeks. 6. At 12 weeks, the porous hydroxyapatite and natural coral were surrounded by newly formed bone most completely, however dense hydroxyapatite was surrounded by newly formed bone in part.

  • PDF

Resonance May Elucidate New Bone Formation Induced by Low amplitude and High frequency Mechanical Stimuli (고주파 미세자극에 의한 뼈의 생성에 관한 모델링)

  • Yoon, Young June;Kim, Moon-Hwan;Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.27-32
    • /
    • 2008
  • Bone is a self-assembly material. It is known that the low amplitude and high frequency mechanical stimulus, which is much less amplitude but higher frequency than those induced by the normal activity, can induce new bone formation. The vibrating resonance is employed to elucidate why new bone is formed by this kind of mechanical stimulus. For example, as 30 Hz and $5{\mu}{\epsilon}$ mechanical stimulus is applied at the wall of canaliculus (the tiny tube type pathway of bone fluid flow and the diameter of canaliculus is less than 200nm), the osteocytic cell membrane experiences $1,000{\mu}{\epsilon}$ strain due to the vibrating resonance. Two experiments will follow after this pilot study; (1) observing the MAPK pathway of osteocytes by using in-vitro cell culture and (2) visualizing the actin filament network in the osteocytes by using the imaging technique, such as confocal laser scanning microscope.

  • PDF

Intracranial Bone Formation - A Case Report - (두개강내에서 발견된 골 조직 - 증 례 보 고 -)

  • Lyo, In Uk;Suh, Jae Hee;Kim, Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.1
    • /
    • pp.78-80
    • /
    • 2001
  • The bone formation accompanied with other diseases in brain has been rarely reported. Furthermore, it has not been reported without any specific disease. We report a case of a 27 year old female who was referred to our hospital because of the incidentally found calcified lesion in plain X-ray of the skull. The CT and MRI of the brain showed a calcification with minimal enhancement at left parietal area. The calcified lesion was removed and biopsy was performed with stereotactic guided craniotomy. Pathologically, the lesion was confirmed as the membranous bone which was composed of bony trabeculations with osteocytes and the biopsy from adjacent area to the bone revealed a gliosis without any other disease.

  • PDF

BONE FORMATION BY HUMAN ALVEOLAR BONE CELLS (사람 치조골세포를 이용한 골형성)

  • Choi, Byung-Ho;Park, Jin-Hyoung;Huh, Jin-Young;Oh, Jin-Rok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.1
    • /
    • pp.42-45
    • /
    • 2002
  • Cultures of primary human alveolar bone-derived cells were established from alveolar bone chips obtained from normal individuals undergoing tooth extraction. These cells were expanded in vitro until passage 3 and used for the in vivo assays. Cells were loaded into transplantation vehicles, and transplanted subcutaneously into immunodeficient mice to study the capacities of human alveolar bone-derived cells to form bone in vivo. Transplants were harvested 12 weeks after transplantation and evaluated histologically. Of 10 human alveolar bone-derived cell transplants, two formed a bone-like tissue that featured osteocytes and mineral. Eight of the ten formed no osseous tissue. These results show that cells from normal human alveolar bone are capable of forming bone-like tissue when transplanted into immunodeficient mice.