Browse > Article
http://dx.doi.org/10.17135/jdhs.2018.18.2.130

Predicting the Role of Osteal Macrophages and Osteocytes in Bone Tissue Network Using a Mathematical Modeling  

Hwang, Soo-Jeong (Department of Dental Hygiene, College of Medical Science, Konyang University)
Publication Information
Journal of dental hygiene science / v.18, no.2, 2018 , pp. 130-135 More about this Journal
Abstract
The aim of this study was to investigate the role of osteal macrophages (osteomac) and osteocytes in bone remodeling using a mathematical model. We constructed the bone system with pre-osteoblasts, osteoclasts, osteocytes, and osteomac. Each link of the parameters and ordinary differential equations followed the Graham's model in 2013 except for the parameters of osteomac signaling and osteocytes signaling to link preosteoblasts and osteoblasts. We simulated the changes in each cell and bone volume according to the changes in the parameters of osteomac signaling and osteocytes signaling. The results showed bone volume was unstable and decreased gradually when the effectiveness of osteocytes and osteomac dropped below a certain level. When the parameters of osteomac signaling and osteocytes signaling to link preosteoblasts and osteoblasts had a value less than 1, bone volume increased with the increase in the parameter of osteomac signaling to link preosteoblasts and osteoblasts. Moreover, although the parameter of osteocytes signaling to link preosteoblasts and osteoblasts, increased in case of a small parameter of osteomac signaling, bone volulme decreased. If the parameters of osteomac signaling to link preosteoblasts and osteoblasts were over a certain level, bone volume was positively maintained, despite the parameter of osteocyte signaling to link preosteoblasts and osteoblasts. We suggested the osteomac may affect bone remodeling and may play an important role in bone cell network.
Keywords
Macrophages; Osteoblasts; Osteoclasts; Osteocytes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Breitling R: What is systems biology? Front Physiol 1: 9, 2010. https://doi.org/10.3389/fphys.2010.00009
2 Kitano H: Systems biology: a brief overview. Science 295: 1662-1664, 2002. https://doi.org/10.1126/science.1069492   DOI
3 Hsu YH, Niu T, Terwedow HA, et al.: Variation in genes involved in the RANKL/RANK/OPG bone remodeling pathway are associated with bone mineral density at different skeletal sites in men. Hum Genet 118: 568-577, 2006. https://doi.org/10.1007/s00439-005-0062-4   DOI
4 Lamora A, Talbot J, Mullard M, Brounais-Le Royer B, Renidi F, Verrecchia F: TGF-${\beta}$ signaling in bone remodeling and osteosarcoma progression. J Clin Med 5: E96, 2016. https://doi.org/10.3390/jcm5110096   DOI
5 Poon B, Kha T, Tran S, Dass CR: Bone morphogenetic protein-2 and bone therapy: successes and pitfalls. J Pharm Pharmacol 68: 139-147, 2016. https://doi.org/10.1111/jphp.12506   DOI
6 Karner CM, Long F: Wnt signaling and cellular metabolism in osteoblasts. Cell Mol Life Sci 74: 1649-1657, 2017. https://doi.org/10.1007/s00018-016-2425-5   DOI
7 Zhao B: TNF and bone remodeling. Curr Osteoporos Rep 15: 126-134, 2017. https://doi.org/10.1007/s11914-017-0358-z   DOI
8 Ruscitti P, Cipriani P, Carubbi F, et al.: The role of IL-1${\beta}$ in the bone loss during rheumatic diseases. Mediators Inflamm 2015: 782382, 2015. https://doi.org/10.1155/2015/782382
9 Prideaux M, Findlay DM, Atkins GJ: Osteocytes: the master cells in bone remodelling. Curr Opin Pharmacol 28: 24-30, 2016. https://doi.org/10.1016/j.coph.2016.02.003   DOI
10 Miron RJ, Bosshardt DD: OsteoMacs: key players around bone biomaterials. Biomaterials 82: 1-19, 2016. https://doi.org/10.1016/j.biomaterials.2015.12.017.   DOI
11 Graham JM, Ayati BP, Holstein SA, Martin JA: The role of osteocytes in targeted bone remodeling: a mathematical model. PLoS One 8: e63884, 2013. https://doi.org/10.1371/journal.pone.0063884   DOI
12 Raggatt LJ, Partridge NC: Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285: 25103-25108, 2010. https://doi.org/10.1074/jbc.R109.041087   DOI
13 Teitelbaum SL, Tondravi MM, Ross FP: Osteoclasts, macrophage, and the molecular mechanisms of bone resorption. J Leukoc Biol 61: 381-388, 1997.   DOI
14 Komarova SV, Smith RJ, Dixon SJ, Sims SM, Wahl LM: Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone 33: 206-215, 2003. https://doi.org/10.1016/S8756-3282(03)00157-1   DOI
15 Sun X, Su J, Bao J, et al.: Cytokine combination therapy prediction for bone remodeling in tissue engineering based on the intracellular signaling pathway. Biomaterials 33: 8265-8276, 2012. https://doi.org/10.1016/j.biomaterials.2012.07.041   DOI
16 Ayati BP, Edwards CM, Webb GF, Wikswo JP: A mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease. Biol Direct 5: 28, 2010. https://doi.org/10.1186/1745-6150-5-28   DOI
17 Lemaire V, Tobin FL, Greller LD, Cho CR, Suva LJ: Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J Theor Biol 229: 293-309, 2004. https://doi.org/10.1016/j.jtbi.2004.03.023   DOI
18 Pivonka P, Zimak J, Smith DW, et al.: Theoretical investigation of the role of the RANK-RANKL-OPG system in bone remodeling. J Theor Biol 262: 306-316, 2010. https://doi.org/10.1016/j.jtbi.2009.09.021   DOI
19 Fujikawa Y, Sabokbar A, Neale S, Athanasou NA: Human osteoclast formation and bone resorption by monocytes and synovial macrophages in rheumatoid arthritis. Ann Rheum Dis 55: 816-822, 1996. http://dx.doi.org/10.1136/ard.55.11.816   DOI
20 Sabokbar A, Fujikawa Y, Neale S, Murray DW, Athanasou NA: Human arthroplasty derived macrophage differentiate into osteoclast bone resorbing cells. Ann Rheum Dis 56: 414-420, 1997. http://dx.doi.org/10.1136/ard.56.7.414   DOI
21 Chang MK, Raggatt LJ, Alexander KA, et al.: Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181: 1232-1244, 2008. https://doi.org/10.4049/jimmunol.181.2.1232   DOI