• Title/Summary/Keyword: Osteoclast cell

Search Result 201, Processing Time 0.028 seconds

Carboxypeptidase E Is a Novel Modulator of RANKL-Induced Osteoclast Differentiation

  • Kim, Hyun-Ju;Hong, JungMin;Yoon, Hye-Jin;Yoon, Young-Ran;Kim, Shin-Yoon
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.685-690
    • /
    • 2014
  • Osteoclasts are large polykaryons that have the unique capacity to degrade bone and are generated by the differentiation of myeloid lineage progenitors. To identify the genes involved in osteoclast development, we performed microarray analysis, and we found that carboxypeptidase E (CPE), a prohormone processing enzyme, was highly upregulated in osteoclasts compared with their precursors, bone marrow-derived macrophages (BMMs). Here, we demonstrate a novel role for CPE in receptor activator of NF-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. The overexpression of CPE in BMMs increases the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear osteoclasts and the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are key regulators in osteoclastogenesis. Furthermore, employing CPE knockout mice, we show that CPE deficiency attenuates osteoclast formation. Together, our data suggest that CPE might be an important modulator of RANKL-induced osteoclast differentiation.

Effects of Dokhwalgisaengtang-gami Water Extract on Osteoclast Differentiation and Osteoblast Function in RANKL-induced RAW 264.7 Cell (독활기생탕가미방(獨活寄生湯加味方)이 파골세포 분화 억제와 조골세포 활성에 미치는 영향)

  • Je, Yun-Mo;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.26 no.2
    • /
    • pp.1-16
    • /
    • 2013
  • Objectives: This study was performed to evaluate the effect of Dokhwalgisaengtang-gami water extract(DGG) on osteoporosis. Methods: The osteoclastogenesis and gene expression were determined in RANKL-stimulated RAW 264.7 cell. And osteoblastogenesis was also determined in rat calvarial cell. Results: The results were summarized as followes. 1. DGG decreased the number of TRAP positive cell in RANKL-stimulated RAW 264.7 cell. 2. DGG inhibited TRAP activity in RANKL-stimulated RAW 264.7 cell. 3. DGG decreased the expression of NAFTc1, MITF in RANKL-stimulated RAW 264.7 cell. 4. DGG increased the expression of iNOS, COX-2, IL-6 in RANKL-stimulated RAW 264.7 cell. 5. DGG decreased the expression of cathepsin K, MMP-9, TRAP in RANKL-stimulated RAW 264.7 cell. 6. DGG increased cell proliferation of rat calvarial cell. 7. DGG increased ALP activity in rat calvarial cell 8. DGG increased bone matrix protein, collagen synthesis and nodule formation in rat calvarial cell. Conclusions: It is concluded that DGG might decrease the bone resorption resulted from decrease of osteoclast differentiation and it's related gene expression. And DGG might increase the bone formation resulted from increase of osteoblast function.

Transcriptional Induction of Cyclooxygenase-2 in Osteoclast Precursors is Involved in TRANCE-induced Osteoclastogenesis

  • Han, Song-Yi;Lee, Na-Kyung;Kim, Kyung-Hee;Lee, Soo-Young
    • Proceedings of the PSK Conference
    • /
    • 2003.10a
    • /
    • pp.102-103
    • /
    • 2003
  • Osteoclast are specialized cells derived from the monocyte/macrophage haematopoietic lineage that develop and adhere to bone matrix, then secrete acid and lytic enzymes that degrade it in a specialized, extracellular compartment. Regulation of osteoclast differentiation is central to the understanding of the pathogenesis and treatment of bone diseases such as osteoporosis. (omitted)

  • PDF

Dlx3 Plays a Role as a Positive Regulator of Osteoclast Differentiation

  • Cha, Ji-Hun;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.32 no.3
    • /
    • pp.85-91
    • /
    • 2007
  • Dlx3 is a homeodomain protein and is known to playa role in development and differentiation of many tissues. Deletion of four base pairs in DLX3 (NT3198) is causally related to tricho-dento-osseous (TDO) syndrome (OMIM # 190320), a genetic disorder manifested by taurodontism, hair abnormalities, and increased bone density in the cranium. Although the observed defects of TDO syndrome involves bone, little is known about the role of Dlx3 in bone remodeling process. In this study, we examined the effect of wild type DLX3 (wtDlx3) expression on osteoclast differentiation and compared it with that of 4-BP DEL DLX3 (TDO mtDlx3). To examine whether Dlx3 is expressed during RANKL-induced osteoclast differentiation, RAW264.7 cells were cultured in the presence of receptor activator of nuclear factor-B ligand (RANKL). Dlx3 protein level increased slightly after RANKL treatment for 1 day and peaked when the fusion of prefusion osteoclasts actively progressed. When wtDlx3 and TDO mtDlx3 were overexpressed in RAW264.7 cells, they enhanced RANKL-induced osteoclastogenesis and the expression of osteoclast differentiation marker genes such as calcitonin receptor, vitronectin receptor and cathepsin K. Since osteoclast differentiation is critically regulated by the balance between RANKL and osteoprotegerin (OPG), we examined the effect of Dlx3 overexpression on expression of RANKL and OPG in C2C12 cells in the presence of bone morphogenetic protein 2. Overexpression of wtDlx3 enhanced RANKL mRNA expression while slightly suppressed OPG expression. However, TDO mtDlx3 did not exert significant effects. This result suggests that inability of TDO mtDlx3 to regulate expression of RANKL and OPG may contribute to increased bone density in TDO syndrome patients. Taken together, it is suggested that Dlx3 playa role as a positive regulator of osteoclast differentiation via up-regulation of osteoclast differentiation-associated genes in osteoclasts, as well as via increasing the ratio of RANKL to OPG in osteoblastic cells.

Effects of Pyrola japonica Extracts on Osteoclast Differentiation and Bone Resorption (녹제초 추출물이 파골세포 분화 및 골 흡수에 미치는 영향)

  • Park, Jung-Sik;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.29 no.2
    • /
    • pp.135-147
    • /
    • 2019
  • Objectives This study was performed to evaluate the effect of Pyrola japonica extract (NJ) and its principal constituent, homoarbutin (HA) on osteoclast differentiation and gene expression and bone resorption. The osteoclastogenesis and gene expression were determined in receptor activator of nuclear factor kappa B ligand (RANKL)-stimulated RAW264.7 cell. Methods In order to evaluate the effect of HA extracted from NJ on bone resorption, osteoclasts were used to be differentiated and formed by stimulating RAW264.7 cells with RANKL. Tartarate-resistant acid phosphatase (TRAP) (+) polynuclear osteoclast formation ability was evaluated, and differentiation control genes including cathepsin K, matrix metalloproteinases-9 (MMP-9), and TRAP in osteoclast differentiation were analyzed by real-time polymerase chain reaction (PCR). Immunoblotting was performed to measure the effect of mitogen-activated protein kinase (MAPK) factors on bone resorption, and the effect of osteoclasts on osteoclast differentiation was measured. Results Both NJ and high concentration of HA blocked RANKL-stimulated differentiation from RAW264.7 cell to TRAP-positive multinucleated cells. NJ reduced RANKL-induced expression of TRAP, cathepsin K. Both NJ and high concentration of HA inhibited RANKL-mediated expression of MMP-9, nuclear factor of activated T-cells, cytoplasmic 1, and cellular Jun-fos. NJ suppressed RANKL-stimulated expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase, tumor necrosis factor-alpha, and levels of interleukins. Both NJ and HA decreased bone resorption in osteoclast-induced bone pit formation model. Conclusions These results suggest that NJ and HA blocked bone resorption by decreasing RANKL-mediated osteoclastogenesis through down-regulation of genes for osteoclast differentiation.

The Effects of Mechanical Strain on Bone Cell Proliferation and Recruitment Induced by Osteocytes

  • Ko, Seong-Hee;Lee, Jiy-Hye;Kim, So-Hee
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.179-186
    • /
    • 2008
  • Several lines of evidence suggest that osteocytes play a critical role in bone remodeling. Both healthy and apoptotic osteocytes can send signals to other bone surface cells such as osteoblasts, osteoclasts, osteoclast precursors, and bone lining cells through canalicular networks. Osteocytes responding to mechanical strain may also send signals to other cells. To determine the role for osteocytes an mechanical strain in bone remodeling, we examined the effects of fluid flow shear stress on osteoclast precursor cell and osteoblast proliferation and recruitment induced by osteocytes. In addition, the effects of fluid flow shear stress on osteocyte M-CSF, RANKL, and OPG mRNA expression were also examined. MLO-Y4 cells were used as an in vitro model for osteocytes, RAW 264.7 cells and MOCP-5 cells as osteoclast precursors, and 2T3 cells as osteoblasts. MLO-Y4 cells conditioned medium (Y4-CM) was collected after 24h culture. For fluid flow experiments, MLO-Y4 cells were exposed to 2h of pulsatile fluid flow (PFF) at 2, 4, 8, $16{\pm}0.6\;dynes/cm^2$ using the Flexcell $Streamer^{TM}$ system. For proliferation assays, MOCP-5, RAW 264.7, and 2T3 cells were cultured with control media or 10-100% Y4 CM. Cells were cultured for 3d, and then cells were counted. RAW 264.7 and 2T3 cell migration was assayed using transwells with control media or 10-100% Y4-CM. M-CSF, RANKL and OPG in MLO-Y4 mRNA expression was determined by semiquantitative RT-PCR. Y4-CM increased osteoclast precursor proliferation and migration, but decreased 2T3 cell proliferation and migration. CM from MLO-Y4 cells exposed to PFF caused decreased RAW 267.4 cell proliferation and migration and 2T3 migration compared to control Y4-CM. However, Y4-CM from cells exposed to PFF had no effect on 2T3 osteoblastic cell proliferation. PFF decreased RNAKL mRNA and increased OPG mRNA in MLO-Y4 cells compared to control(without PFF). PFF had no effect on M-CSF mRNA expression in MLO-Y4 cells. These results suggest that osteocytes can regulate bone remodeling by communication with osteoclast precursors and osteoblasts and that osteocytes can communicate mechanical signals to other cells.

The Regulatory Role of Chenodeoxycholic Acid on the Proliferation of Osteoclast Precursor Cells (Chenodeoxycholic Acid에 의한 파골전구세포의 증식 조절)

  • Noh, A Long Sae Mi;Yim, Mijung
    • YAKHAK HOEJI
    • /
    • v.58 no.3
    • /
    • pp.165-170
    • /
    • 2014
  • We investigated the effect of Chenodeoxycholic acid (CDCA) on the proliferation of osteoclast precursor cells. CDCA decreased the proliferation of osteoclast precursor cells through the control of cell cycle regulators such as cyclin D1, p21 and p27. When we checked the signaling pathway, CDCA decreased Erk activation in osteoclast precursor cells. Furthermore, two bile acid receptors, FXR and TGR5, were involved in the suppressive effect of CDCA. Taken together, this study suggested that bile acid plays an important role in the proliferation of osteoclast precursor cells.

Poncirin Inhibits Osteoclast Differentiation and Bone Loss through Down-Regulation of NFATc1 In Vitro and In Vivo

  • Chun, Kwang-Hoon;Jin, Hyun Chul;Kang, Ki Sung;Chang, Tong-Shin;Hwang, Gwi Seo
    • Biomolecules & Therapeutics
    • /
    • v.28 no.4
    • /
    • pp.337-343
    • /
    • 2020
  • Activation of osteoclast and inactivation of osteoblast result in loss of bone mass with bone resorption, leading to the pathological progression of osteoporosis. The receptor activator of NF-κB ligand (RANKL) is a member of the TNF superfamily, and is a key mediator of osteoclast differentiation. A flavanone glycoside isolated from the fruit of Poncirus trifoliata, poncirin has anti-allergic, hypocholesterolemic, anti-inflammatory and anti-platelet activities. The present study investigates the effect of poncirin on osteoclast differentiation of RANKL-stimulated RAW264.7 cells. We observed reduced formation of RANKL-stimulated TRAP-positive multinucleated cells (a morphological feature of osteoclasts) after poncirin exposure. Real-time qPCR analysis showed suppression of the RANKL-mediated induction of key osteoclastogenic molecules such as NFATc1, TRAP, c-Fos, MMP9 and cathepsin K after poncirin treatment. Poncirin also inhibited the RANKL-mediated activation of NF-κB and, notably, JNK, without changes in ERK and p38 expression in RAW264.7 cells. Furthermore, we assessed the in vivo efficacy of poncirin in the lipopolysaccharide (LPS)-induced bone erosion model. Evaluating the micro-CT of femurs revealed that bone erosion in poncirin treated mice was markedly attenuated. Our results indicate that poncirin exerts anti-osteoclastic effects in vitro and in vivo by suppressing osteoclast differentiation. We believe that poncirin is a promising candidate for inflammatory bone loss therapeutics.

Effects of the Hot Water Extract Mixtures from Achyranthes bidentata Blume and Panax ginseng on Osteoclast and Osteoblast Differentiation (우슬과 인삼 열수추출 혼합물의 파골세포와 조골세포 분화 효과)

  • Kim, Jin Seong;Lee, Sang Won;Kim, Young Ock;Bang, Man Seok;Oh, Chung Hun;Kim, Chul Tae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.2
    • /
    • pp.117-124
    • /
    • 2015
  • Osteoporosis induces a bone mineral density loss due to imbalance of bone homeostasis that is achieved by osteoclasts (which are involved in bone resorption) and osteoblasts (which are involved in bone formation). Thus, this study was performed to evaluate the effects of hot water extract of the Achyranthes bidentata Blume (ABB) and Panax ginseng (Gin) on osteoclast and osteoblast differentiation. In this study, there was no cytotoxicity by ABB, 50 and $100{\mu}g/ml$ of Gin significantly decreased cell viability of RANKL-induced osteoclast in RAW264.7 cell (p < 0.01). But, it was $50{\mu}g/ml$ of ABB and Gin mixtures increased due to protective action of ABB. Furthermore, Gin contained groups (Gin, ABB and Gin mixtures) were inhibitory effects on osteoclast differentiation and bone resorption, and increased in osteoblast differentiation activity. Gin clearly inhibited RANKL-induced osteoclast differentiation by decreased calcitonin and TRAP (p < 0.01). Also, these extracts significantly increased calcium accumulation formation of osteoblastic differentiation reagents-induced osteoblast in MC3T3-E1 cell (p < 0.05). These results suggest that ABB and Gin mixtures may be a potential as drug for the treatment of osteoporosis.

BIOCHEMICAL CHARACTERIZATION OF EMBRYONIC CHICK CALVARIAL CELLS

  • Yu, Jae-Hyung;Kim, Jung-Kun;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.25 no.6 s.53
    • /
    • pp.697-704
    • /
    • 1995
  • Chicken calvarial bone is known to contain various cell types, but their exact composition is unknown. By characterizing the chicken calvarial bone biochemically, it can be used to study biochemical, histochemical actions of bone cells in general. Calvaria of 18-day-old white leg horn embryo was aseptically dissected and bone cell populations were isolated by sequential enzymatic digestion. Histochemical study for osteoclast-like bone cell. population was performed with tartrate resistant acid phosphatase(TRAP) stain and for osteoblast-like bone cell population, alkaline phosphatase(ALP) stain was performed. Biochemical study for osteoblast-like bone cell population was performed using alkaline phosphatase(ALP) assay. Following conclusions were obtained from this study. 1. TRAP positive multi and mononuclear cells were mostly observed in group I and II, indicating that osteoclast-like bone cell population is mostly found in these groups. 2. All the cultured groups showed almost equal ALP activities and were positive for ALP stain, indicating that osteoblast-like bone cell population is evenly dispersed in all culture groups. 3. Experimental group treated with $1,25(OH)_{2}D_3$ showed increase in ALP activity in contrast to the control group, confirming previous studies that $1,25(OH)_{2}D_3$ increases ALP activities in in vitro bone cultures. 4. Results from von Kossa's stain indicated that in vitro bone formation had occured after 3 weeks of culture with beta-glycero phosphate.

  • PDF