• 제목/요약/키워드: Osteoclast cell

검색결과 201건 처리시간 0.026초

Effects of Interleukin-$1\beta$, Tumor Necrosis Factor-$\alpha$ and Interferon-$\gamma$ on the Nitric Oxide Production and Osteoclast Generation in the Culture of Mouse Bone Marrow Cells

  • Kwon, Young-Man;Kim, Se-Won;Ko, Seon-Yle
    • International Journal of Oral Biology
    • /
    • 제31권2호
    • /
    • pp.67-72
    • /
    • 2006
  • Nitric oxide(NO) is a labile, uncharged, reactive radical that functions as a sensitive mediator of intercellular communication in diverse tissues. It has been reported that NO is produced by osteoblast and these results may suggest that NO is integrally involved in the regulation of osteoclast formation and osteoclast resorption activity by osteoblastic cells. We examined the effect of cytokines on NO release by mouse bone marrow cell. We also examined the effects of cytokines and sodium nitroprusside(SNP) on the formation of osteoclast-like cell from mouse bone marrow cells in culture. Cytokines stimulated NO production of mouse bone marrow cells, and N-nitro-L-arginine methyl ester, a specific inhibitor of NO synthase, suppressed the cytokine-induced NO production. SNP showed dual action in the generation of osteoclasts. The addition of $30{\mu}M$ SNP inhibited the formation of tartrate resistant acid phosphatase(TRAP)(+) multinucleated cell, whereas lower concentration($3{\mu}M$) of SNP enhanced it. Although the precise action of NO remains to be elucidated in detail, the action of NO in osteoclast generation in our studies seems to be associated, at least in part, with bone metabolism and bone pathophysiology.

The Inactivation of ERK1/2, p38 and NF-kB Is Involved in the Down-Regulation of Osteoclastogenesis and Function by A2B Adenosine Receptor Stimulation

  • Kim, Bo Hyun;Oh, Ju Hee;Lee, Na Kyung
    • Molecules and Cells
    • /
    • 제40권10호
    • /
    • pp.752-760
    • /
    • 2017
  • A2B adenosine receptor (A2BAR) is known to be the regulator of bone homeostasis, but its regulatory mechanisms in osteoclast formation are less well-defined. Here, we demonstrate the effect of A2BAR stimulation on osteoclast differentiation and activity by RANKL. A2BAR was expressed in bone marrow-derived monocyte/macrophage (BMM) and RANKL increased A2BAR expression during osteoclastogenesis. A2BAR stimulation with its specific agonist BAY 60-6583 was sufficient to inhibit the activation of ERK1/2, p38 MAP kinases and $NF-{\kappa}B$ by RANKL as well as it abrogated cell-cell fusion in the late stage of osteoclast differentiation. Stimulation of A2BAR suppressed the expression of osteoclast marker genes, such as c-Fos, TRAP, Cathepsin-K and NFATc1, induced by RANKL, and transcriptional activity of NFATc1 was also inhibited by stimulation of A2BAR. A2BAR stimulation caused a notable reduction in the expression of Atp6v0d2 and DC-STAMP related to cell-cell fusion of osteoclasts. Especially, a decrease in bone resorption activity through suppression of actin ring formation by A2BAR stimulation was observed. Taken together, these results suggest that A2BAR stimulation inhibits the activation of ERK1/2, p38 and $NF-{\kappa}B$ by RANKL, which suppresses the induction of osteoclast marker genes, thus contributing to the decrease in osteoclast cell-cell fusion and bone resorption activity.

The estrogen-related receptor γ modulator, GSK5182, inhibits osteoclast differentiation and accelerates osteoclast apoptosis

  • Kim, Hyun-Ju;Yoon, Hye-Jin;Lee, Dong-Kyo;Jin, Xian;Che, Xiangguo;Choi, Je-Yong
    • BMB Reports
    • /
    • 제54권5호
    • /
    • pp.266-271
    • /
    • 2021
  • Estrogen-related receptor γ (ERRγ), a member of the orphan nuclear receptor family, is a key mediator in cellular metabolic processes and energy homeostasis. Therefore, ERRγ has become an attractive target for treating diverse metabolic disorders. We recently reported that ERRγ acts as a negative regulator of osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand (RANKL). In the present study, we explored the effects of an ERRγ-specific modulator, GSK5182, on ERRγ-regulated osteoclast differentiation and survival. Interestingly, GSK5182 increased ERRγ protein levels much as does GSK4716, which is an ERRγ agonist. GSK5182 inhibited osteoclast generation from bone-marrow-derived macrophages without affecting cytotoxicity. GSK5182 also attenuated RANKL-mediated expression of cFos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), pivotal transcription factors for osteoclastogenesis. Arrested osteoclast differentiation was associated with reduced RANK expression, but not with the M-CSF receptor, c-Fms. GSK5182 strongly blocked the phosphorylation of IκBα, c-Jun N-terminal kinase, and extracellular signal-regulated kinase in response to RANKL. GSK5182 also suppressed NF-κB promoter activity in a dose-dependent manner. In addition to osteoclastogenesis, GSK5182 accelerated osteoclast apoptosis by caspase-3 activation. Together, these results suggest that GSK5182, a synthetic ERRγ modulator, may have potential in treating disorders related to bone resorption.

일엽추 추출물이 RANKL 유도 RAW264.7 Cell의 유전자 발현에 미치는 영향 (Effects of Securinega suffructicosa(SS) Extract on Osteoclastogenesis and Gene Expression in RANKL-induced RAW Cell)

  • 이효근;황귀서
    • 대한예방한의학회지
    • /
    • 제14권3호
    • /
    • pp.13-26
    • /
    • 2010
  • Objectives : This study was performed to evaluate the effect of Securinega suffructicosa Rehder (SS) on osteoclast differentiation and gene expression. Methods : The osteoclastogenesis and gene expression were determined in RANKL-stimulated RAW 264.7. The results were summarized as followes. Results : SS decreased the number of TRAP positive cell in RANKL-stimulated RAW264.7 cell. SS decreased the expression of RANK, TNF${\alpha}$, and IL-6 in RANKL-stimulated RAW264.7 cell. SS decreased the expression of iNOS and COX-2 in RANKL-stimulated RAW264.7 cell. SS decreased the expression of Cathepsin K in RANKL-stimulated RAW264.7 cell. Conclusions : It is concluded that SS might decrease the bone resorption resulted from decrease of osteoclast differentiation and it's related gene expression.

The Role of Jak/STAT Pathways in Osteoclast Differentiation

  • Lee, Young-Kyun;Kim, Hong-Hee
    • Biomolecules & Therapeutics
    • /
    • 제19권2호
    • /
    • pp.141-148
    • /
    • 2011
  • Osteoclasts are bone-resorbing cells of monocyte/macrophage origin and are culprits of bone destruction associated with osteoporosis, rheumatoid arthritis, and cancer bone metastasis. Recent advances in osteoclast biology revealed central roles of various cytokines in regulating osteoclastogenesis both in vitro and in vivo. However, exact underlying mechanisms including signaling pathways downstream of receptor ligation are still under pursuit. In the present review, the role of Jak/STAT proteins and their regulators will be discussed in connection with osteoclastogenesis, since growing evidence indicates that a number of cytokines and growth factors utilizing Jak/STAT signaling pathways affect osteoclastogenesis. A better understanding on the role of Jak/STAT pathways in osteoclast differentiation will not only strengthen our knowledge on osteoclast biology but also provide invaluable insights into the development of anti-resorptive strategies for treating bone-lytic diseases.

마우스 골수세포 배양시 transforming growth factor-β와 epidermal growth factor가 파골세포양세포의 형성에 미치는 영향 (Effects of Transforming Growth Factor-β and Epidermal Growth Factor on the Osteoclast-like Cell Formation in the Mouse Bone Marrow Cell Culture)

  • 임충남;고선일;김정근;김세원
    • Journal of Oral Medicine and Pain
    • /
    • 제25권1호
    • /
    • pp.53-62
    • /
    • 2000
  • Bone marrow culture systems are widely used to differentiate osteoclast-like cells in vitro using several osteotropic hormones. In this study, we isolated and cultured the mouse bone marrow cells with or without some osteotropic hormones such as parathyroid hormone(PTH), prostaglandin $E_2(PGE_2)$ and $l,25(OH)_2-vitamin$ $D_3$(Vit. $D_3$). We confirmed the formation of osteoclast-like cells morphologically and functionally by the expression of tartrate-resistant acid phosphatase(TRAP) and by their capability to resorb dentin slices. We also studied the effects of transforming growth $factor-{\beta}(TGF-{\beta})$ and epidermal growth factor(EGF) on the Vit. $D_3-induced$ osteoclast-like cell formation. In control, a few multinucleated cells were formed whereas PTH and $PGE_2$ increased the number of multinucleated cells. PTH, $PGE_2$ and Vit. $D_3$ induced the formation of TRAP-positive multinucleated cells. After culture of mouse bone marrow cells on the dentin slices with or without osteotropic hormones, giant cells with diverse morphology were found on the dentin slices under the scanning electronmicroscopy. After removing the attached cells, resorption pits were identified on the dentin slices, and the shape of resorption pits was variable. EGF increased the osteoclast-like cell formation induced by Vit. $D_3$, however, $TGF-{\beta}$ showed biphasic effect, which at low concentration, increased and at high concentration, decreased the osteoclast-like cell formation induced by Vit. $D_3$.

  • PDF

Dexamethasone Inhibits the Formation of Multinucleated Osteoclasts via Down-regulation of ${\beta}_3$ Integrin Expression

  • Kim, Yong-Hee;Jun, Ji-Hae;Woo, Kyung-Mi;Ryoo, Hyun-Mo;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • Archives of Pharmacal Research
    • /
    • 제29권8호
    • /
    • pp.691-698
    • /
    • 2006
  • Although glucocorticoids are known to affect osteoclast differentiation and function, there have been conflicting reports about the effect of glucocorticoids on osteoclast formation, leading to the assumption that microenvironment and cell type influence their action. We explored the effect of the synthetic glucocorticoid analog dexamethasone on the formation of osteoclasts. Dexamethasone inhibited the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts without affecting the formation of TRAP-positive mononuclear cells in a coculture of mouse osteoblasts and bone marrow cells. Dexamethasone did not inhibit mRNA expression levels of the receptor activator of nuclear factor-kB ligand and osteoprotegerin, the essential regulators of osteoclastogenesis. Dexamethasone down-regulated the expression of ${\beta}_3$ integrin mRNA and protein but did not alter expression of other osteoclast differentiation marker genes. Both dexamethasone and echistatin, a ${\beta}_3$ integrin function blocker, inhibited TRAP-positive multinucleated osteoclast formation but not TRAP-positive mononuclear cell formation. These results suggest that dexamethasone inhibits the formation of multinucleated osteoclasts, at least in part, through the down-regulation of ${\beta}_3$ integrin, which plays an important role in the formation of multinucleated osteoclasts.

귀비탕(歸脾湯)이 파골세포 분화와 조골세포 활성에 미치는 영향 (The Effect of Guibi-tang Water Extract on Osteoclast Differentiation and Osteoblast Proliferation)

  • 최경희;유동열
    • 대한한방부인과학회지
    • /
    • 제27권3호
    • /
    • pp.12-27
    • /
    • 2014
  • Objectives: This study was performed to evaluate the effect of Guibi-tang water extract (GB) on osteoporosis. Methods: We examined the effect of GB on osteoclast differentiation using murine pre-osteoclastic RAW 264.7 cells treated with receptor activator of nuclear factor kappa-B ligand (RANKL). The effect of GB on osteoclast was measured by counting TRAP (+) multinucleated cells and measuring TRAP activity. The mRNA expressions of osteoclastogenesis-related genes (Cathepsin K, MMP-9, TRAP, NFATc1, MITF, TNF-${\alpha}$, IL-6, COX-2) were measured by real-time PCR. We examined the effect of GB on osteoblast proliferation, ALP activity, bone matrix protein synthesis and collagen synthesis using murine calvarial cell. Results: GB decreased the number of TRAP (+) multinucleated cells and inhibited TRAP activity in RANKL-stimulated RAW 264.7 cell. GB decreased the expression of genes related osteoclastogenesis such as Cathepsin K, MMP-9, TRAP, NFATc1, MITF, COX-2 in RANKL-stimulated RAW 264.7 cell. But GB did not decrease the expression of iNOS and increased the expression of TNF-${\alpha}$, IL-6 in RANKL-stimulated RAW 264.7 cell. These genes (iNOS, TNF-${\alpha}$, IL-6) are thought to be related with the inflammatory bone destruction. GB increased cell proliferation of rat calvarial cell and also increased ALP activity in rat calvarial cell. GB did not increase bone matrix protein synthesis but increased collagen synthesis in rat calvarial cell. Conclusions: This study suggests that GB may be effective in treating osteoporosis by inhibiting osteoclast differentiation and its related gene expression and by increasing osteoblast proliferation.

The Regulation of p27Kip-1 and Bcl2 Expression Is Involved in the Decrease of Osteoclast Proliferation by A2B Adenosine Receptor Stimulation

  • Kim, Hong Sung;Lee, Na Kyung
    • 대한의생명과학회지
    • /
    • 제23권4호
    • /
    • pp.327-332
    • /
    • 2017
  • A2B adenosine receptor (A2BAR) is known to be a regulator of bone homeostasis, but the regulatory mechanism of A2BAR on the osteoclast proliferation are poorly explored. Recently, we have shown that stimulation with BAY 60-6583, a specific agonist of A2BAR, significantly reduced macrophage-colony stimulating factor (M-CSF)-induced osteoclast proliferation by inducing cell cycle arrest at G1 phase and increasing the apoptosis of osteoclasts. The objective of this study was to investigate the regulatory mechanisms of cell cycle and apoptosis by A2BAR stimulation. The expression of A2BAR and M-CSF receptor, c-Fms, was not changed by A2BAR stimulation whereas M-CSF effectively induced c-Fms expression during osteoclast proliferation. Interestingly, A2BAR stimulation remarkably increased the expression of $p27^{Kip-1}$, a cell cycle inhibitor, but the expression of Cyclin D1 and cdk4 was not affected. In addition, while BAY 60-6583 treatment reduced the expression of Bcl2, an anti-apoptotic oncogene, it failed to regulate the expression of Bax, a pro-apoptotic marker. Taken together, these results imply that the increase of $p27^{Kip-1}$ inducing cell cycle arrest at G1 phase and the decrease of Bcl2 inducing anti-apoptotic response by A2BAR stimulation contribute to the down-regulation of osteoclast proliferation.

유방의 침윤성 파골양 거대세포 관암종의 세포소견 - 1예 보고 - (Invasine Ductal Carcinoma with Osteoclast-Like Giant Cell in a Young Woman)

  • 강현정;최경운;곽희숙;설미영;김지연
    • 대한세포병리학회지
    • /
    • 제18권1호
    • /
    • pp.69-73
    • /
    • 2007
  • Mammary carcinoma with osteoclast-like giant cells is an unusual neoplasm characterized by giant cells, mononuclear stromal cells, and hemorrhage accompanying a low grade carcinoma. We present the cytological findings in a case of invasive ductal carcinoma with osteoclast-like giant cells that was initially confused with a fibroadenoma, due to its well-demarcated and soft mass and the young age of the patient. A 28-year-old female presented with a 4.5 cm, well demarcated, soft and nontender mass in the right breast. Fine needle aspiration cytology (FNAC) showed a combination of low grade malignant epithelial cell clusters and osteoclast-like giant cells. The atypical epithelial cells were present in cohesive sheets and clusters. Osteoclast-like giant cells and bland-looking mononuclear cells were scattered. An histological examination revealed the presence of an invasive ductal carcinoma with osteoclast-like giant cells. We report here the cytological findings of this rare carcinoma in a very young woman. The minimal atypia of the epithelial cells and its soft consistency may lead to a false negative diagnosis in a young woman. The recognition that osteoclastlike giant cells are rarely present in a low grade carcinoma, but not in benign lesion, can assist the physician in making a correct diagnosis.