Browse > Article
http://dx.doi.org/10.4062/biomolther.2011.19.2.141

The Role of Jak/STAT Pathways in Osteoclast Differentiation  

Lee, Young-Kyun (Department of Cell and Developmental Biology, School of Dentistry, Seoul National University)
Kim, Hong-Hee (Department of Cell and Developmental Biology, School of Dentistry, Seoul National University)
Publication Information
Biomolecules & Therapeutics / v.19, no.2, 2011 , pp. 141-148 More about this Journal
Abstract
Osteoclasts are bone-resorbing cells of monocyte/macrophage origin and are culprits of bone destruction associated with osteoporosis, rheumatoid arthritis, and cancer bone metastasis. Recent advances in osteoclast biology revealed central roles of various cytokines in regulating osteoclastogenesis both in vitro and in vivo. However, exact underlying mechanisms including signaling pathways downstream of receptor ligation are still under pursuit. In the present review, the role of Jak/STAT proteins and their regulators will be discussed in connection with osteoclastogenesis, since growing evidence indicates that a number of cytokines and growth factors utilizing Jak/STAT signaling pathways affect osteoclastogenesis. A better understanding on the role of Jak/STAT pathways in osteoclast differentiation will not only strengthen our knowledge on osteoclast biology but also provide invaluable insights into the development of anti-resorptive strategies for treating bone-lytic diseases.
Keywords
Jak; STAT; Osteoclast; Differentiation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Grigoriadis, A. E., Wang, Z. Q., Cecchini, M. G., Hofstetter, W., Felix, R., Fleisch, H. A. and Wagner, E. F. (1994) c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443-448.   DOI
2 Gupta, N., Barhanpurkar, A. P., Tomar, G. B., Srivastava, R. K., Kour, S., Pote, S. T., Mishra, G. C. and Wani, M. R. (2010) IL-3 inhibits human osteoclastogenesis and bone resorption through downregulation of c-Fms and diverts the cells to dendritic cell lineage. J. Immunol. 185, 2261-2272.   DOI
3 Hayashi, T., Kaneda, T., Toyama, Y., Kumegawa, M. and Hakeda, Y. (2002) Regulation of receptor activator of NF-kappa B ligand-induced osteoclastogenesis by endogenous interferon-beta (INF-beta) and suppressors of cytokine signaling (SOCS) The possible counteracting role of SOCSs- in IFN-beta-inhibited osteoclast formation. J. Biol. Chem. 277, 27880-27886.   DOI
4 Hikata, T., Takaishi, H., Takito, J., Hakozaki, A., Furukawa, M., Uchikawa, S., Kimura, T., Okada, Y., Matsumoto, M., Yoshimura, A., Nishimura, R., Reddy, S. V., Asahara, H. and Toyama, Y. (2009) PIAS3 negatively regulates RANKL-mediated osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblasts. Blood 113, 2202-2212.   DOI
5 Hong, M. H., Williams, H., Jin, C. H. and Pike, J. W. (2000) The inhibitory effect of interleukin-10 on mouse osteoclast formation involves novel tyrosine-phosphorylated proteins. J. Bone Miner Res. 15, 911-918.
6 Horwood, N. J., Elliott, J., Martin, T. J. and Gillespie, M. T. (2001) IL-12 alone and in synergy with IL-18 inhibits osteoclast formation in vitro. J. Immunol. 166, 4915-4921.   DOI
7 Hu, R., Sharma, S. M., Bronisz, A., Srinivasan, R., Sankar, U. and Ostrowski, M. C. (2007) Eos, MITF, and PU.1 recruit corepressors to osteoclast-specific genes in committed myeloid progenitors. Mol. Cell Biol. 27, 4018-4027.   DOI
8 Arora, T., Liu, B., He, H., Kim, J., Murphy, T. L., Murphy, K. M., Modlin, R. L. and Shuai, K. (2003) PIASx is a transcriptional co-repressor of signal transducer and activator of transcription 4. J. Biol. Chem. 278, 21327-21330.   DOI
9 Boyle, W. J., Simonet, W. S. and Lacey, D. L. (2003) Osteoclast differentiation and activation. Nature 423, 337-342.   DOI
10 Chung, C. D., Liao, J., Liu, B., Rao, X., Jay, P., Berta, P. and Shuai, K. (1997) Specific inhibition of Stat3 signal transduction by PIAS3. Science 278, 1803-1805.   DOI
11 Darnell, J. E. Jr. (1997) STATs and gene regulation. Science 277, 1630-1635.   DOI   ScienceOn
12 Djaafar, S., Pierroz, D. D., Chicheportiche, R., Zheng, X. X., Ferrari, S. L. and Ferrari-Lacraz, S. (2010) Inhibition of T cell-dependent and RANKL-dependent osteoclastogenic processes associated with high levels of bone mass in interleukin-15 receptor-defi cient mice. Arthritis. Rheum. 62, 3300-3310.   DOI
13 Duplomb, L., Baud'huin, M., Charrier, C., Berreur, M., Trichet, V., Blanchard, F. and Heymann, D. (2008) Interleukin-6 inhibits receptor activator of nuclear factor kappaB ligand-induced osteoclastogenesis by diverting cells into the macrophage lineage: key role of Serine727 phosphorylation of signal transducer and activator of transcription 3. Endocrinology 149, 3688-3697.   DOI
14 Favus, M. J. (2010) Bisphosphonates for osteoporosis. N. Engl. J. Med. 363, 2027-2035.   DOI
15 Fox, S. W., Haque, S. J., Lovibond, A. C. and Chambers, T. J. (2003) The possible role of TGF-beta-induced suppressors of cytokine signaling expression in osteoclast/macrophage lineage commitment in vitro. J. Immunol. 170, 3679-3687.   DOI
16 Abu-Amer, Y. (2001) IL-4 abrogates osteoclastogenesis through STAT6-dependent inhibition of NF-kappaB. J. Clin. Invest. 107, 1375-1385.   DOI
17 Frith, J. C., Monkkonen, J., Blackburn, G. M., Russell, R. G. and Rogers, M. J. (1997) Clodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5'-(beta, gamma-dichloromethylene) triphosphate, by mammalian cells in vitro. J. Bone Miner Res. 12, 1358-1367.   DOI
18 Hilton, D. J. (1999) Negative regulators of cytokine signal transduction. Cell Mol. Life Sci. 55, 1568-1577.   DOI
19 Hirayama, T., Dai, S., Abbas, S., Yamanaka, Y. and Abu-Amer, Y. (2005) Inhibition of infl ammatory bone erosion by constitutively active STAT-6 through blockade of JNK and NF-kappaB activation. Arthritis. Rheum. 52, 2719-2729.   DOI
20 Ahlen, J., Andersson, S., Mukohyama, H., Roth, C., Backman, A., Conaway, H. H. and Lerner, U. H. (2002) Characterization of the bone-resorptive effect of interleukin-11 in cultured mouse calvarial bones. Bone 31, 242-251.   DOI
21 Alexander, W. S. (2002) Suppressors of cytokine signalling (SOCS) in the immune system. Nat. Rev. Immunol. 2, 410-416.
22 Zou, J., Presky, D. H., Wu, C. Y. and Gubler, U. (1997) Differential associations between the cytoplasmic regions of the interleukin-12 receptor subunits beta1 and beta2 and JAK kinases. J. Biol. Chem. 272, 6073-6077.   DOI
23 Arai, F., Miyamoto, T., Ohneda, O., Inada, T., Sudo, T., Brasel, K., Miyata, T., Anderson, D. M. and Suda, T. (1999) Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J. Exp. Med. 190, 1741-1754.   DOI
24 Yagi, M., Miyamoto, T., Sawatani, Y., Iwamoto, K., Hosogane, N., Fujita, N., Morita, K., Ninomiya, K., Suzuki, T., Miyamoto, K., Oike, Y., Takeya, M., Toyama, Y. and Suda, T. (2005) DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J. Exp. Med. 202, 345-351.   DOI
25 Yamada, A., Takami, M., Kawawa, T., Yasuhara, R., Zhao, B., Mochizuki, A., Miyamoto, Y., Eto, T., Yasuda, H., Nakamichi, Y., Kim, N., Katagiri, T., Suda, T. and Kamijo, R. (2007) Interleukin-4 inhibition of osteoclast differentiation is stronger than that of interleukin-13 and they are equivalent for induction of osteoprotegerin production from osteoblasts. Immunology 120, 573-579.   DOI
26 Yasothan, U. and Kar, S. (2008) Osteoporosis: overview and pipeline. Nat. Rev. Drug Discov. 7, 725-726.   DOI
27 Yoshida, H., Hayashi, S., Kunisada, T., Ogawa, M., Nishikawa, S., Okamura, H., Sudo, T. and Shultz, L. D. (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442-444.   DOI
28 Yoshitake, F., Itoh, S., Narita, H., Ishihara, K. and Ebisu, S. (2008) Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-kappaB signaling pathways. J. Biol. Chem. 283, 11535-11540.   DOI
29 Zhang, Z., Welte, T., Troiano, N., Maher, S. E., Fu, X. Y. and Bothwell, A. L. (2005) Osteoporosis with increased osteoclastogenesis in hematopoietic cell-specific STAT3-defi cient mice. Biochem. Biophys. Res. Commun. 328, 800-807.   DOI
30 Takayanagi, H., Ogasawara, K., Hida, S., Chiba, T., Murata, S., Sato, K., Takaoka, A., Yokochi, T., Oda, H., Tanaka, K., Nakamura, K. and Taniguchi, T. (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408, 600-605.   DOI   ScienceOn
31 van Beek, E. R., Cohen, L. H., Leroy, I. M., Ebetino, F. H., Lowik, C. W. and Papapoulos, S. E. (2003) Differentiating the mechanisms of antiresorptive action of nitrogen containing bisphosphonates. Bone 33, 805-811.   DOI
32 Tamura, T., Udagawa, N., Takahashi, N., Miyaura, C., Tanaka, S., Yamada, Y., Koishihara, Y., Ohsugi, Y., Kumaki, K. and Taga, T. (1993) Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc. Natl. Acad. Sci. USA 90, 11924-11928.   DOI
33 Teitelbaum, S. L. (2000) Bone resorption by osteoclasts. Science 289, 1504-1508.   DOI   ScienceOn
34 Tondravi, M. M., McKercher, S. R., Anderson, K., Erdmann, J. M., Quiroz, M., Maki, R. and Teitelbaum, S. L. (1997) Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 386, 81-84.   DOI
35 Walker, D. G. (1975) Spleen cells transmit osteopetrosis in mice. Science 190, 785-787.   DOI
36 Wei, S., Wang, M. W., Teitelbaum, S. L. and Ross, F. P. (2002) Interleukin-4 reversibly inhibits osteoclastogenesis via inhibition of NFkappa B and mitogen-activated protein kinase signaling. J. Biol. Chem. 277, 6622-6630.   DOI
37 Weitzmann, M. N., Cenci, S., Rifas, L., Brown, C. and Pacifici, R. (2000) Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood 96, 1873-1878.
38 Wu, H., Xu, G. and Li, Y. P. (2009) Atp6v0d2 is an essential component of the osteoclast-specific proton pump that mediates extracellular acidification in bone resorption. J. Bone Miner Res. 24, 871-885.   DOI
39 Quinn, J. M., Sims, N. A., Saleh, H., Mirosa, D., Thompson, K., Bouralexis, S., Walker, E. C., Martin, T. J. and Gillespie, M. T. (2008) IL-23 inhibits osteoclastogenesis indirectly through lymphocytes and is required for the maintenance of bone mass in mice. J. Immunol. 181, 5720-5729.   DOI
40 Rawlings, J. S., Rosler, K. M. and Harrison, D. A. (2004) The JAK/STAT signaling pathway. J. Cell Sci. 117, 1281-1283.   DOI
41 Richards, C. D., Langdon, C., Deschamps, P., Pennica, D. and Shaughnessy, S. G. (2000) Stimulation of osteoclast differentiation in vitro by mouse oncostatin M, leukaemia inhibitory factor, cardiotrophin-1 and interleukin 6: synergy with dexamethasone. Cytokine 12, 613-621.   DOI
42 Sato, M., Grasser, W., Endo, N., Akins, R., Simmons, H., Thompson, D. D., Golub, E. and Rodan, G. A. (1991) Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. J. Clin. Invest. 88, 2095-2105.   DOI
43 Shuai, K. (2000) Modulation of STAT signaling by STAT-interacting proteins. Oncogene 19, 2638-2644.   DOI
44 Shuai, K. and Liu, B. (2003) Regulation of JAK-STAT signalling in the immune system. Nat. Rev. Immunol. 3, 900-911.   DOI   ScienceOn
45 Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. and Schreiber, R. D. (1998) How cells respond to interferons. Annu. Rev. Biochem. 67, 227-264.   DOI
46 Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E. F., Mak, T. W., Kodama, T. and Taniguchi, T. (2002a) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889-901.   DOI
47 Takayanagi, H., Kim, S., Matsuo, K., Suzuki, H., Suzuki, T., Sato, K., Yokochi, T., Oda, H., Nakamura, K., Ida, N., Wagner, E. F. and Taniguchi, T. (2002b) RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 416, 744-749.   DOI   ScienceOn
48 Ogata, Y., Kukita, A., Kukita, T., Komine, M., Miyahara, A., Miyazaki, S. and Kohashi, O. (1999) A novel role of IL-15 in the development of osteoclasts: inability to replace its activity with IL-2. J. Immunol. 162, 2754-2760.
49 Nagata, N., Kitaura, H., Yoshida, N. and Nakayama, K. (2003) Inhibition of RANKL-induced osteoclast formation in mouse bone marrow cells by IL-12: involvement of IFN-gamma possibly induced from non-T cell population. Bone 33, 721-732.   DOI
50 O'Brien, C. A., Gubrij, I., Lin, S. C., Saylors, R. L. and Manolagas, S. C. (1999) STAT3 activation in stromal/osteoblastic cells is required for induction of the receptor activator of NF-kappaB ligand and stimulation of osteoclastogenesis by gp130-utilizing cytokines or interleukin-1 but not 1,25-dihydroxyvitamin D3 or parathyroid hormone. J. Biol. Chem. 274, 19301-19308.   DOI
51 Ohishi, M., Matsumura, Y., Aki, D., Mashima, R., Taniguchi, K., Kobayashi, T., Kukita, T., Iwamoto, Y. and Yoshimura, A. (2005) Suppressors of cytokine signaling-1 and -3 regulate osteoclastogenesis in the presence of infl ammatory cytokines. J. Immunol. 174, 3024-3031.   DOI
52 Osherov, N., Gazit, A., Gilon, C. and Levitzki, A. (1993) Selective inhibition of the epidermal growth factor and HER2/neu receptors by tyrphostins. J. Biol. Chem. 268, 11134-11142.
53 Palmqvist, P., Lundberg, P., Persson, E., Johansson, A., Lundgren, I., Lie, A., Conaway, H. H. and Lerner, U. H. (2006) Inhibition of hormone and cytokine-stimulated osteoclastogenesis and bone resorption by interleukin-4 and interleukin-13 is associated with increased osteoprotegerin and decreased RANKL and RANK in a STAT6-dependent pathway. J. Biol. Chem. 281, 2414-2429.
54 Palmqvist, P., Persson, E., Conaway, H. H. and Lerner, U. H. (2002) IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae. J. Immunol. 169, 3353-3362.   DOI
55 Masarachia, P., Weinreb, M., Balena, R. and Rodan, G. A. (1996) Comparison of the distribution of 3H-alendronate and 3H-etidronate in rat and mouse bones. Bone 19, 281-290.   DOI
56 Liu, B., Gross, M., ten Hoeve, J. and Shuai, K. (2001) A transcriptional corepressor of Stat1 with an essential LXXLL signature motif. Proc. Natl. Acad. Sci. USA 98, 3203-3207.   DOI
57 Liu, B., Liao, J., Rao, X., Kushner, S. A., Chung, C. D., Chang, D. D. and Shuai, K. (1998) Inhibition of Stat1-mediated gene activation by PIAS1. Proc. Natl. Acad. Sci. USA 95, 10626-10631.   DOI
58 Mangashetti, L. S., Khapli, S. M. and Wani, M. R. (2005) IL-4 inhibits bone-resorbing activity of mature osteoclasts by affecting NF-kappaB and Ca2+ signaling. J. Immunol. 175, 917-925.   DOI
59 Mizoguchi, T., Muto, A., Udagawa, N., Arai, A., Yamashita, T., Hosoya, A., Ninomiya, T., Nakamura, H., Yamamoto, Y., Kinugawa, S., Nakamura, M., Nakamichi, Y., Kobayashi, Y., Nagasawa, S., Oda, K., Tanaka, H., Tagaya, M., Penninger, J. M., Ito, M. and Takahashi, N. (2009) Identification of cell cycle-arrested quiescent osteoclast precursors in vivo. J. Cell Biol. 184, 541-554.   DOI
60 Mohamed, S. G., Sugiyama, E., Shinoda, K., Taki, H., Hounoki, H., Abdel-Aziz, H. O., Maruyama, M., Kobayashi, M., Ogawa, H. and Miyahara, T. (2007) Interleukin-10 inhibits RANKL-mediated expression of NFATc1 in part via suppression of c-Fos and c-Jun in RAW264.7 cells and mouse bone marrow cells. Bone 41, 592-602.   DOI
61 Moreno, J. L., Kaczmarek, M., Keegan, A. D. and Tondravi, M. (2003) IL-4 suppresses osteoclast development and mature osteoclast function by a STAT6-dependent mechanism: irreversible inhibition of the differentiation program activated by RANKL. Blood 102, 1078-1086.   DOI   ScienceOn
62 Murray, P. J. (2007) The JAK-STAT signaling pathway: input and output integration. J. Immunol. 178, 2623-2629.   DOI
63 Lankford, C. S. and Frucht, D. M. (2003) A unique role for IL-23 in promoting cellular immunity. J. Leukoc. Biol. 73, 49-56.   DOI
64 Kleinberger-Doron, N., Shelah, N., Capone, R., Gazit, A. and Levitzki, A. (1998) Inhibition of Cdk2 activation by selected tyrphostins causes cell cycle arrest at late G1 and S phase. Exp. Cell Res. 241, 340-351.   DOI
65 Kong, Y. Y., Yoshida, H., Sarosi, I., Tan, H. L., Timms, E., Capparelli, C., Morony, S., Oliveira-dos-Santos, A. J., Van, G., Itie, A., Khoo, W., Wakeham, A., Dunstan, C. R., Lacey, D. L., Mak, T. W., Boyle, W. J. and Penninger, J. M. (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315-323.   DOI
66 Kwak, H. B., Sun, H. M., Ha, H., Lee, J. H., Kim, H. N. and Lee, Z. H. (2008) AG490, a Jak2-specific inhibitor, induces osteoclast survival by activating the Akt and ERK signaling pathways. Mol. Cells 26, 436-442.   과학기술학회마을
67 Lee, S. H., Rho, J., Jeong, D., Sul, J. Y., Kim, T., Kim, N., Kang, J. S., Miyamoto, T., Suda, T., Lee, S. K., Pignolo, R. J., Koczon-Jaremko, B., Lorenzo, J. and Choi, Y. (2006) v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat. Med. 12, 1403-1409.
68 Lee, S. K., Kalinowski, J. F., Jastrzebski, S. L., Puddington, L. and Lorenzo, J. A. (2003) Interleukin-7 is a direct inhibitor of in vitro osteoclastogenesis. Endocrinology 144, 3524-3531.   DOI
69 Lee, Y., Hyung, S. W., Jung, H. J., Kim, H. J., Staerk, J., Constantinescu, S. N., Chang, E. J., Lee, Z. H., Lee, S. W. and Kim, H. H. (2008) The ubiquitin-mediated degradation of Jak1 modulates osteoclastogenesis by limiting interferon-{beta}-induced inhibitory signaling. Blood 111, 885-893.   DOI
70 Lee, Z. H. and Kim, H. H. (2003) Signal transduction by receptor activator of nuclear factor kappa B in osteoclasts. Biochem. Biophys. Res. Commun. 305, 211-214.   DOI
71 Ju, J. H., Cho, M. L., Moon, Y. M., Oh, H. J., Park, J. S., Jhun, J. Y., Min, S. Y., Cho, Y. G., Park, K. S., Yoon, C. H., Min, J. K., Park, S. H., Sung, Y. C. and Kim, H. Y. (2008) IL-23 induces receptor activa tor of NF-kappaB ligand expression on CD4+ T cells and promotes osteoclastogenesis in an autoimmune arthritis model. J. Immunol. 181, 1507-1518.   DOI
72 Huang, W., O'Keefe, R. J. and Schwarz, E. M. (2003) Exposure to receptor-activator of NFkappaB ligand renders pre-osteoclasts resistant to IFN-gamma by inducing terminal differentiation. Arthritis. Res. Ther. 5, R49-59.   DOI
73 Iotsova, V., Caamano, J., Loy, J., Yang, Y., Lewin, A. and Bravo, R. (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat. Med. 3, 1285-1289.   DOI
74 Jacquin, C., Gran, D. E., Lee, S. K., Lorenzo, J. A. and Aguila, H. L. (2006) Identification of multiple osteoclast precursor populations in murine bone marrow. J. Bone Miner Res. 21, 67-77.
75 Khapli, S. M., Mangashetti, L. S., Yogesha, S. D. and Wani, M. R. (2003) IL-3 acts directly on osteoclast precursors and irreversibly inhibits receptor activator of NF-kappa B ligand-induced osteoclast differentiation by diverting the cells to macrophage lineage. J. Immunol. 171, 142-151.   DOI
76 Kim, K., Lee, J., Kim, J. H., Jin, H. M., Zhou, B., Lee, S. Y. and Kim, N. (2007) Protein inhibitor of activated STAT 3 modulates osteoclastogenesis by down-regulation of NFATc1 and osteoclast-associated receptor. J. Immunol. 178, 5588-5594.   DOI
77 Kim, K., Lee, S. H., Kim J. H., Choi, Y. and Kim, N. (2008) NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol. Endocrinol. 22, 176-185.   DOI
78 Kim, S., Koga, T., Isobe, M., Kern, B. E., Yokochi, T., Chin, Y. E., Karsenty, G., Taniguchi, T. and Takayanagi, H. (2003) Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes. Dev. 17, 1979-1991.   DOI