• Title/Summary/Keyword: Osteoblast response

Search Result 81, Processing Time 0.027 seconds

Ideal Freezing Curve Can Avoid the Damage by Latent Heat of Fusion During Freezing (냉동 시 잠재용융열에 의한 피해를 최소화할 수 있는 이상냉동 곡선)

  • 박한기;박영환;윤웅섭;김택수;윤치순;김시호;임상현;김종훈;곽영태
    • Journal of Chest Surgery
    • /
    • v.36 no.4
    • /
    • pp.219-228
    • /
    • 2003
  • Background:Liquid nitrogen freezing techniques have already met with widespread success in biology and medicine as a means of long-term storage for cells and tissues. The use of cryoprotectants such as glycerol and dimethylsulphoxide to prevent ice crystal formation, with carefully controlled rates of freezing and thawing, allows both structure and viability to be retained almost indefinitely. Cryopreservation of various tissues has various con-trolled rates of freezing. Material and Method: To find the optimal freezing curve and the chamber temperature, we approached the thermodynamic calculation of tissues in two ways. One is the direct calculation method. We should know the thermophysical characteristics of all components, latent heat of fusion, area, density and volume, etc. This kind of calculation is so sophisticated and some variables may not be determined. The other is the indirect calculation method. We performed the tissue freezing with already used freezing curve and we observed the actual freezing curve of that tissue. And we modified the freezing curve with several steps of calculation, polynomial regression analysis, time constant calculation, thermal response calculation and inverse calculation of chamber temperature. Result: We applied that freezing program on mesenchymal stem cell, chondrocyte, and osteoblast. The tissue temperature decreased according to the ideal freezing curve without temperature rising. We did not find any differences in survival. The reason is postulated to be that freezing material is too small and contains cellular components. We expect the significant difference in cellular viability if the freezing curve is applied on a large scale of tissues. Conclusion: This program would be helpful in finding the chamber temperature for the ideal freezing curie easily.

The Effect of Interleukin $1-{\beta}$, Platelet Derived Growth Factor-BB and Transforming Growth $Factor-{\beta}$ on the expression of PDLs17 mRNA in the Cultured Human Periodontal Ligament Fibroblasts (($IL-1{\beta}$), PDGF-BB 그리고 $TGF-{\beta}$가 사람 배양 치주인대 섬유모세포의 PDLs17 mRNA의 발현에 미치는 영향)

  • Lirn, Ki-Jung;Han, Kyung-Yoon;Kirn, Byung-Ock;Yeorn, Chang-Yeob;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.4
    • /
    • pp.787-801
    • /
    • 2001
  • The molecular mechanisms control the function of PDL(periodonta1 ligament) cells and/or fibroblasts remain unclear. PDLsl7, PDL-specific gene, had previousely identified the cDNA for a novel protein from cultured PDL fibroblasts using subtraction hybridization between gingival fibroblasts and PDL fibroblasts. The purpose of this study was to determine the regulation by growth factors and cytokines on PDLsl7 gene expression in cultured human periodontal ligament cells and observe the immunohistochemical localization of PDLsl7 protein in various tissues of mouse. Primary PDL fibroblasts isolated by scraping the root of the extracted human mandibular third molars. The cells were incubated with various concentration of human recombinant $IL-1{\beta}$, PDGF-BB and TGF\;${\beta}$ for 48h nd 2 weeks. At each time point total RNA was extracted and the levels of transcription ere assessed by reverse transcription-polymerase chain reaction (RT-PCR assay). polyclonal antiserum raised against PDLsl7 peptides, CLSVSYNRSYQINE and SEAVHETDLHDGC, were made, and stained the tooth, periodontium, developing bone, bone marrow and mid-palatal suture of the mouse. The results were as follows. 1. PDLsl7 mRNA levels were increased in response to PDGF (10ng/ml) and $TGF\;{\beta}$(20ng/ml) after treatment of the $IL-1{\beta}$, PDGF-BB and $TGF{\beta}$for 48 h. 2. PDLsl7 was up-regulated only by $TGF{\beta}$(20 ng/ml) after treatment of the $IL-1{\beta}$, PDGF-BB and $TGF\;{\beta}$ for 2 weeks and unchanged by the other stimulants. 3. PDLsl7 was a novel protein coding the 142 amino acid peptides in the ORF and the nucleotide sequences of the obtained cDNA from RT-PCR was exactly same as the nucleotides of the database. 4. Immunohistochemical analysis showed that PDLsl7 is preferentially expressed in the PDL, differentiating osteoblast-like cells and stromal cells of the bone marrow in the adult mouse. 5. The expression of PDLsl7 protein was barely detectable in gingival fibroblasts, hematopoetic cells of the bone marrow and mature osteocytes of the alveolar bone. These results suggest that PDLsl7 might upregulated by PDGF-BB or $TGF{\beta}$ and acts at the initial stage of differentiation when the undifferentiated mesenchymal cells in the bone marrow and PDL differentiate into multiple cell types. However, more research needs to be performed to gain a better understanding of the exact function of PDLsl7 during the differentiation of bone marrow mesenchymal and PDL cells.

  • PDF

Biodegradability of porous Calcium Polyphosphate (다공질 Calcium Polyphosphate의 생분해성에 관한 연구)

  • Yang, Seung-Min;Lee, Young-Kyoo;Han, Eun-Young;Kim, Seok-Young;Kye, Seung-Beom;Lee, Seung-Jin;Lee, Yong-Moo;Ku, Young;Han, Soo-Boo;Chung, Chong-Pyoung;Choi, Sang-Mook;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.3
    • /
    • pp.555-564
    • /
    • 2001
  • The purpose of this study is to evaluate the bioresorbability of Calcium Polyphosphate added with $Na_2O$ and chitosan. Though calcium phosphate ceramics meet some of the needs for bone replacement, they have some limitation of unresorbability and fibrous encapsulation without direct bone apposition during bone remodelling. To solve these problem, we developed a new ceramic, calcium polyphosphate(CPP), and report the biologic response to CPP in extraction sites of beagle dog. Porous CPP granules were prepared by condensation of anhydrous $Ca(H_2PO_4)_2$ to form non-crystalline $Ca(PO_3)_2$. CPP granules added with $Na_2O$ and chitosan were implanted in extraction sockets and histologic observation were performed at 12 weeks later. Histologic observation at 12 weeks revealed that CPP matrix were mingled with and directly apposed to new bone without any intervention of fibrous connective tissue. CPP granules added with chitosan were well adatped without any adverse tissue reaction and resorbed slowly and spontaneously. CPP granules added with $Na_2O$ and chitosan show multinucleated giant cells and osteoblast-like cells around grafted material and newly formed bone. This result revealed that CPP, regardless of its additive component, had a high affinity for bone and had been resorbed slowly. From this results, it was suggested that CPP is promising ceramic as a bone substitute and addition of $Na_2O$ and chitosan help biodegradation. In further study , it will be determined which concentration of $Na_2O$ help biodegradation and the other additive components increase the degradation rate.

  • PDF

A Literature Review on Nano-Modified Implant Surfaces (나노구조 표면에 관한 문헌고찰)

  • Park, Go-Woon;Cha, Min-Sang;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.2
    • /
    • pp.141-151
    • /
    • 2013
  • The nano-surface modification techniques could be classified; internal modifications which enhance surface roughness and porosity in nano level and external modifications as nano particle coating. Nano-modified implant surface has various morphograpies such as nanotube, nanopit, nanonodule and polymorphic structures. Creating surface depends upon preparation method and material, however, there is no standard preparation technique not yet. The nano-modified surfacet is electrochemically stable comparing with the surface modified in micron level. Nano-modified surface has little cytotoxicity, stimulates osteoblast proliferation and differentiation. Moreover, it decreases soft tissue intervention by interrupting the proliferation of fibroblast. Nanostructure has similar size and shape with cells and proteins, consequently leads to good biocompatibility and enhanced osseointegration. However, the actual effect in vivo is limited, due to the distance of effect. Even if nano-modified surface has antibiotic property due to photocatalysis, short duration time makes clinical application questionable. Further investigations should focus on the optimal nano-modified surface, which has many potentials.

Cell study on the Magnesium ion implanted surface with PSII (PSII를 이용한 마그네슘 이온 주입 임플란트에 대한 MC3T3-E1 골모양 세포 반응 연구)

  • Shin, Hyeong-Joo;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra;Lee, Hee-Su;Cha, Min-Sang
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.361-374
    • /
    • 2009
  • For successful osteogenesis around the implants, interaction between implant surface and surrounding tissue is important. Biomechanical bonding and biochemical bonding are considered to influence the response of adherent cells. But the focus has shifted surface chemistry. The purpose of this study is to evaluate the MC3T3-E1 osteoblast like cell responses of magnesium (Mg) ion implanted titanium surface produced using a plasma source ion implantation method. Commercially pure titanium disc was used as substrates. The discs were prepared to produce four different surface, A: Machine turned surface, B: Mg implanted surface, C: sandblasted surface, D: sandblasted and Mg implanted surface. MC3T3 El osteoblastic like cells were cultured on the disc specimens. Cell adhesion, proliferation, differentiation, and synthesis of extracellular matrix were evaluated. The cell adhesion morphology was evaluated by SEM. RT PCR assay was used for assessment of cell adhesion, proliferation and differentiation. ALP activity was measured for cell differentiation. The results of this study were as follows: 1. SEM showed that cell on Mg ion groups was more proliferative than that of non Mg ion groups. On the machine turned surface, cell showed some degree of contact guidance in aligning with the machining grooves. 2. In RT PCR analysis, osteonectin and c-fos mRNA were more expressed on sandblasted and Mg ion implanted group. 3. ALP activity was not significantly different among all groups. Within the limitations of this study, the following conclusions were drawn: It might indicate Mg ion implanted titanium surface induce better bone response than non Mg ion groups.

Role of p-38 MAP Kinase in apoptosis of hypoxia-induced osteoblasts (저산소 상태로 인한 조골세포 고사사기전에서 p-38 MAP kinase의 역할에 관한 연구)

  • Yoon, Jeong-Hyeon;Jeong, Ae-Jin;Kang, Kyung-Hwa;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.33 no.3 s.98
    • /
    • pp.169-183
    • /
    • 2003
  • Tooth movement by orthodontic force effects great tissue changes within the periodontium, especially by shifting the blood flow in the pressure side and resulting in a hypoxic state of low oxygen tension. The aim of this study is to elucidate the possible mechanism of apoptosis in response to hypoxia in MC3T3El osteoblasts, the main cells in bone remodeling during orthodontic tooth movement. MC3T3El osteoblasts under hypoxic conditions ($2\%$ orygen) resulted in apoptosis in a time-dependent manner as estimated by DNA fragmentation assay and nuclear morphology stained with fluorescent dye, Hoechst 33258. Pretreatment with Z-VAD-FMK, a pancaspase inhibitor, or Z-DEVD-CHO, a specific caspase-3 inhibitor, completely suppressed the DNA ladder in response to hypoxia. An increase in caspase-3-like protease (DEVDase) activity was observed during apoptosis, but no caspase-1 activity (YVADase) was detected. To confirm what caspases are involved in apoptosis, Western blot analysis was performed using anti-caspase-3 or -6 antibodies. The 10-kDa protein, corresponding to the active products of caspase-3, and the 10-kDa protein of the active protein of caspase-6 were generated in hypoxia-challenged cells in which the processing of the full length form of caspase-3 and -6 was evident. While a time course similar to this caspase-3 and -6 activation was evident, hypoxic stress caused the cleavage of lamin A, which was typical of caspase-6 activity. In addition, the stress elicited the release of cytochrome c into the cytosol during apoptosis. Furthermore, we observed that pre-treatment with SB203580, a selective p38 mitogen activated protein kinase inhibitor, attenuated the hypoxia-induced apoptosis. The addition of SB203S80 suppressed caspase-3 and -6-like protease activity by hypoxia up to $50\%$. In contrast, PD98059 had no effect on the hypoxia-induced apoptosis. To confirm the involvement of MAP kinase, JNK/SAPK, ERK, or p38 kinase assay was performed. Although p38 MAPK was activated in response to hypoxic treatment, the other MAPK -JNK/SAPK or ERK- was either only modestly activated or not at all. These results suggest that p38 MAPK is involved in hypoxia-induced apoptosis in MC3T3El osteoblasts.

EFFECT OF INTERLEUKIM-10 ON THE BONE RESORPTION INDUCED BY INTERLEUKIN-1B (Interleukin-10 이 $interleukin-1{\beta}$로 유도되는 골흡수에 미치는 효과)

  • Yu, Yun-Jung;Kang, Yun-Sun;Lee, Syng-Ill
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.2
    • /
    • pp.321-339
    • /
    • 1994
  • The cytokines released by osteoblasts induce bone resorption via the differentiation of osteoclast precursors. In this process, $interleukin-1{\beta}$($IL-1{\beta}$)-induced bone resorption is mediated by granulocyte macrophage-colony stimulation factor(GM-CSF), interleukin-6 (IL-6), and tumor necrosis factor ${\alpha}$($TNF-{\alpha}$) released from osteoblasts. Since these cytokines (GM-CSF, IL-6, $TNF-{\alpha}$) are produced by not only osteoblasts but also monocytes, and interleukin-10(I1-10) inhibits the secretion of these cytokines from monocytes, it may be speculated that IL 10 could modulate the production of GM-CSF, IL-6, and $TNF-{\alpha}$ by osteoblasts, then control $IL-1{\beta}-induced$ bone resorption. Therefore, the aims of the present study were to examine the effects of IL-10 on bone resorption. The sixten or seventeen-day pregnant ICR mice were injected with $^{45}Ca$ and sacrificed one day after injection. Then fetal mouse calvaria prelabeled with $^{45}Ca$ were dissected out. In order to confirm the degree of bone resorption, mouse calvaria were treated with Lipopolysaccharide(LPS), $TNF-{\alpha}$, $IL-1{\alpha}$, IL-8, $IL-1{\beta}$, and $IL-1{\alpha}$, Then, IL-10 and $interferon-{\gamma}$ ($IFN-{\gamma}$) were added to calvarial medium, in an attempt to evaluate the effect of $IL-1{\beta}-induced$ bone resorption. In addition, osteoclasts formation in bone marrow cell cultures, and the concentration of IL-6, $TNF-{\alpha}$, and GM-CSF produced from mouse calvarial cells were investigated in response to $IL-1{\beta}$ alone and simultaneously adding f $IL-1{\beta}$ and IL-10. The degree of bone resorption was expressed as the ratio of $^{45}Ca$ release(the treated/the control). The osteoclasts in bone marrow cultures were indentified by tartrate resistant acid phosphatase(TRAP) stain and the concentration of the cytokines was quantified using enzyme linked immunosorbent method. As results of these studies, bone resorption was induced by LPS(1 ng/ml ; the ratio of $^{45}Ca$ release, $1.14{\pm}0.07$). Also $IL-1{\beta}$(1 ng/ml), $IL-1{\alpha}$(1 ng/ml), and $TNF-{\alpha}$(1 ng/ml) resulted in bone resorption(the rations of $^{45}Ca$ release, $1.61{\pm}0.26$, $1.77{\pm}0.03$, $1.20{\pm}0.15$ respectively), but IL-8 did not(the ratio of $^{45}Ca$ release, $0.93{\pm}0.21$). The ratios of $^{45}Ca$ release in response to IL-10(400 ng/ml) and $IFN-{\gamma}$(100 ng/ml) were $1.24{\pm}0.12$ and $1.08{\pm}0.04$ respectively, hence these cytokines inhibited $IL-1{\beta}$(1 ng/ml)-induced bone resorption(the ratio of $^{45}Ca$ release $1.65{\pm}0.24$). While $IL-1{\beta}$(1 ng/ml) increased the number of TRAP positive multinulcleated cells in bone marrow cultures($20{\pm}11$), simultaneously adding $IL-1{\beta}$(1 ng/ml) and IL-10(400 ng/ml) decreased the number of these cells($2{\pm}2$). Nevertheless, IL-10(400 ng/ml) did not affect the IL-6, GM-CSF, and $TNF-{\alpha}$ secretion from $IL-1{\beta}$(1 ng/ml)-activated mouse calvarial cells. From the above results, it may be suggested that IL-10 inhibites $IL-1{\beta}-induced$ osteoclast differntiation and bone resorption. However, the inhibitory effect of IL-10 on the osteoclast formation seems to be mediated not by the reduction of IL-6, GM-CSF, and $TNF-{\alpha}$ production, but by other mechanisms.

  • PDF

Histologic changes of tooth and periodontal tissues applying to contraction & intrusion force for the maxillary four incisors of dogs (성견 상악 4절치의 Contraction과 압하시 치아 및 주위 조직의 조직학적 변화에 관한 실험 연구)

  • Kim, Young-Kuk;Cha, Kyung-Suk;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.29 no.5 s.76
    • /
    • pp.535-549
    • /
    • 1999
  • The Purposes of this study were to investigate the initial tissue changes on the teeth and surrounding tissues under contraction and intrusive force by contraction UTA. A control and experimental dogs, 10-months in age, were studied. Contraction and intrusive force(60gm) were applied at upper four incisors by contraction UTA. Experimental dogs were sacrificed at 2 weeks and 4 weeks after force application, respectively. In this study, 2 experimental groups were designed by the duration of force applied(E1, E2). The specimens were taken around the upper first and second incisor in each groups and were prepared for the H-E and MT stain for light microscopic observation. From the results of the study, the following conclusions may be drown. : 1. In control group, the periodontal ligament width was constant from apical third to cervical third of the root and periodontal fiber arrangement was horizontal or oblique in cervical third, oblique in middle third and apical third. In alveolar bond, smooth appearance was shown with osteoblast. 2. In experimental group 1, in proportion to force was concentrated at labial middle third and apical third of root of the upper first and second incisors, root of these tooth tipped labially and intruded at a time. 3. In experimental group 2, periodontal ligament width and arrangement was similar to control and observed strong calcified response at the labial middle third of root. But, alveolar bond resorption and cementum resorption were as before seen at labial middle third and apical third of root that force was concentrated.

  • PDF

Pharmacological and Biochemical Characterization of Cells Isolated from Fetal Rat Calvaria (백서태자두개관에서 분리한 세포의 약리학적 및 생화학적 특성에 관한연구)

  • Han, Nam-Soo;Cheong, Dong-Kyun;Mori, Masakazu
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.193-207
    • /
    • 1990
  • Transforming growth factor ${\beta}(TGF-{\beta})$ is a multifunctional polypeptide with diverse effects on the proliferation, differentiation and other functions in many cell types. $TGF-{\beta}$ is highly abundant in bone matrix and induces divergent responses in many aspects of bone cell metabolism . Several lines of investigation indicate that matrix-associated $TGF-{\beta}$ is the products of bone cells themselves. However, exact bone cell type reponsible for the production of $TGF-{\beta}$ is still in controversy, The present study was undertaken to determine the cellular origin of matrix-associated $TGF-{\beta}$ and to assess how different bone cells respond to $TGF-{\beta}$. As a prerequisite for this, 5 bone cell populations of distinct phenotype were isolated from fetal calvaria with sequential enzyme digestion protocol and biochemical characterization. Calvarial cell populations released in early stage showed fibroblastic features whereas populations relesed later was enriched with osteoblast-like cell as judged by their acid and alkaline phosphatase activities, cAMP responsiveness to parathyroid hormone, calcitonin and prostaglandin $E_2$ and collagen synthesis rate. By polyacylamide gel and immunoblot analysis of bone and calvarial cell extracts, presence of $TGF-{\beta}$ in bone tissues and production of $TGF-{\beta}$ by bone cells were confirmed again. Subsequent analysis of calvarial cell extracts prepared as individual population revealed that all calvarial cell populations synthesize $TGF-{\beta}$. Exogenously added $TGF-{\beta}$ induced biphasic response upon bone cell proliferation under serum-free condition. In osteoblastic cell populations, it was stimulatory whereas inhibitory in fibroblastic cell populations. In contrast, collagen and noncollagen protein synthesis of all calvarial cell populations were stimulated by $TGF-{\beta}$. Enhancement of protein synthesis was found to be more general rather than specific for collagen synthesis. In addition, effects of $TGF-{\beta}$ on protein synthesis were independent to its effects on cell proliferation. In summary, production of $TGF-{\beta}$ by bone cells and differential actions on various cell populations observed in this study suggest that $TGF-{\beta}$ may play an important role in the regulation of bone metabolism by modulating the specific cellular functions in autocrine and paracrine fashion.

  • PDF

ROS Scavenging Effect and Cell Viability of Opuntia humifusa Extract on Osteoblastic MC3T3-E1 Cells (천년초 추출물이 조골세포의 증식과 ROS소거능에 미치는 영향)

  • Hwang, Hyun-Jung;Jung, Bok-Mi;Kim, Mi-Hyang
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1752-1760
    • /
    • 2011
  • In this study, the effect of the Opuntiahumifusa extracts on proliferation, alkaline phosphatase (ALP) activity, collagen synthesis and ROS level of a cell was investigated using an osteoblast. Opuntiahumifusawas separated intoOpuntiahumifusapeel (OH-P), seed (OH-Se) and stem (OH-St).These were subjected to extraction by using hot water and ethanol. The proliferation of the MC3T3-E1 osteoblastic cells that were treated with OH-Se water extract were increased by approximately 120%. Regarding the effects of OH-Se on ALP activity, the $50{\mu}g/ml$ ethanol extract group showed the highest activity. The synthesis of collagen increased significantly in response to treatment with OH-Se water extract. The ROS scavenging effects of Opuntiahumifusawere investigated for involvement of oxidativedamage, cell culture and staining. Also, when OH-Se water extract $100{\mu}g/ml$ was added, the ROS level decreased by 54%. These results indicate that Opuntiahumifusa extracts have an anabolic effect on bone through the promotion of osteoblastic differentiation, suggesting that it could be used for the treatment of common metabolic bone diseases.