• Title/Summary/Keyword: Osmotic stress

Search Result 185, Processing Time 0.028 seconds

Molecular Characterization of FprB (Ferredoxin-$NADP^+$ Reductase) in Pseudomonas putida KT2440

  • Lee, Yun-Ho;Yeom, Jin-Ki;Kang, Yoon-Suk;Kim, Ju-Hyun;Sung, Jung-Suk;Jeon, Che-Ok;Park, Woo-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1504-1512
    • /
    • 2007
  • The fpr gene, which encodes a ferredoxin-$NADP^+$ reductase, is known to participate in the reversible redox reactions between $NADP^+$/NADPH and electron carriers, such as ferredoxin or flavodoxin. The role of Fpr and its regulatory protein, FinR, in Pseudomonas putida KT2440 on the oxidative and osmotic stress responses has already been characterized [Lee at al. (2006). Biochem. Biophys. Res. Commun. 339, 1246-1254]. In the genome of P. putida KT2440, another Fpr homolog (FprB) has a 35.3% amino acid identity with Fpr. The fprB gene was cloned and expressed in Escherichia coli. The diaphorase activity assay was conducted using purified FprB to identify the function of FprB. In contrast to the fpr gene, the induction of fprB was not affected by oxidative stress agents, such as paraquat, menadione, $H_2O_2$, and t-butyl hydroperoxide. However, a higher level of fprB induction was observed under osmotic stress. Targeted disruption of fprB by homologous recombination resulted in a growth defect under high osmotic conditions. Recovery of oxidatively damaged aconitase activity was faster for the fprB mutant than for the fpr mutant, yet still slower than that for the wild type. Therefore, these data suggest that the catalytic function of FprB may have evolved to augment the function of Fpr in P. putida KT2440.

D-Alaninepeptidase Increases the Vulnerability of Bacterial Cells to Osmotic Stress and Antibiotics (D-Alaninepeptidase에 의한 세균의 삼투압 및 항생제에 대한 취약성 증가)

  • Song, Jin-Sue;Lee, Young-Nam
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.299-305
    • /
    • 2006
  • D-Alaninepeptidase purified from Bacillus amyloliquefaciene CMB01 caused a reduction of survival of Proteus vulgaris, Klebsiella oxytoca, and Staphylococcus aureus placed under the osmotic pressure. D-Alaninepeptidase caused an increase of susceptibility of bacteria to antibiotics. An increased number of malformed cells in bacterial groups exposed to D-alaninepeptidase was observed by scanning electron microscopy. These data suggested that bacterial cells exposed to D-alaninepeptidase resulted in an increase of vulnerability of bacterial cells toward environmental stress, such as osmotic pressure and antibiotic substances.

The Effects of Acute Osmotic Stress on Innate Immunity of Nile Tilapia (Oreochromis niloticus)

  • Choi, Sang-Hoon;Park, Kwan-Ha
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.343-349
    • /
    • 2010
  • The effects of osmotic stress on the non-specific immune response of Nile tilapia, Oreochromis niloticus, were investigated. Osmoregulatory mechanism of tilapia has been studied, but less information is available about innate immune response of O. niloticus faced with hyperosmolality. Acute osmotic stress was elicited by transferring tilapia from freshwater (FW) to 24 psu seawater (SW). Non-specific immune parameters including lysozyme activities of plasma and head kidney (HK), alternative complement pathway (ACP) activity in plasma, phagocytic capacities of spleen and HK immune cells, and respiratory burst activity of immune cells in both HK and spleen were analyzed. Lysozyme activities were increased at 1 h and 30 h after transfer to SW, but decreased at 10 h after SW transfer. Conversely, ACP activity increased 10 h after SW transfer. Phagocytic capacity increased slightly at 1 h and 5 h after SW transfer, and respiratory burst activity showed an increase in superoxide release at 10 h after SW transfer. Taken together, these results indicate that the exposure of tilapia to hyperosmotic conditions has immunostimulatory effects on cellular and humoral immune reactions.

Expression of Arabidopsis thaliana SIK (Stress Inducible Kinase) Gene in a Potato Cultivar (Solanum tuberosum L. 'Taedong Valley')

  • Yoon Jung-Ha;Fang Yi-Lan;Park Eung-Jun;Kim Hye-Jin;Na Yun-Jeong;Lee Dong-Hee;Yang Deok-Chun;Lim Hak-Tae
    • Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.202-208
    • /
    • 2005
  • Osmotic stress is one of major limiting factors in crop production. In particular, seasonal drought often causes the secondary disease in the field, resulting in severe reduction in both quality and productivity. Recent efforts have revealed that many genes encoding protein kinases play important roles in osmotic stress signal transduction pathways. Previously, the AtSIK (Arabidopsis thaliana Stress Inducible Kinase) mutants have shown to enhance tolerance to abiotic stresses, accompanying with higher expression of abiotic stress-related genes than did the wild-type plants. In this study, we have transformed potato (cv. Taedong Valley) with the AtSIK expression cassette. Both PCR and RT-PCR using AtSIK-specific primers showed stable integration and expression of the AtSIK gene in individual transgenic lines, respectively. Foliar application of herbicide ($Basta^{(R)}$) at commercial application rate (0.3% (v/v)) revealed another evidence of stable gene introduction of T-DNA which includes the bar gene for herbicide resistance. Overexpression of the AtSIK gene under dual CaMV35S promoter increased sensitivity to salt stress (300 mM NaCl), which was demonstrated by the reduction rate of chlorophyll contents in leaves of transgenic potato lines. These results suggest that possible increase of osmotic tolerance in potato plants may be achieved by antisense expression of AtSIK gene.

  • PDF

Experimental study of electro-osmotic hydraulic conductivity changes with voltage gradients (전압경사에 따른 전기삼투 투수계수의 변화에 대한 실험적 연구)

  • Yoon, Dong-Wook;Kim, Hyun-Ki;Cho, Nam-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1002-1007
    • /
    • 2010
  • This study evaluates the electro-osmotic hydraulic conductivity for the clay specimen by applying the series of the voltage gradient simultaneously with different stress conditions. The test results shows that the shrinkage of voids corresponds to the linear decrease in the electro-osmotic seepage velocity, and the changes of electro-chemical characteristics in the specimen induces the gradual decrease of the electro-osmotic seepage velocity with the constant voltage gradient.

  • PDF

Heterogeneous overexpression of Oryza sativa salt induced RING Finger protein OsSIRF1 positively regulates salt and osmotic stress in transgenic Arabidopsis

  • Chapagain, Sandeep;Jang, Cheol Seong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.150-150
    • /
    • 2017
  • Plants suffer from various abiotic stresses among them; soil salinity is one of major adverse factor in declining agricultural productivity. So, development of salt stress tolerance crops have potential role to increase crop production. The RING finger proteins are known to play crucial roles in abiotic stress environment to plants. In this study, we identified one Salt-responsive Really${\underline{I}nteresting}$ ${\underline{n}ew}$ ${\underline{g}ene}$ (RING) E3 ubiquitin ligase gene OsSIRF1 from rice root tissues during salt stress and studied its molecular function. Expression of OsSIRF1 was induced under various abiotic stress conditions, including salt, heat, drought, and ABA. Result of an in vitro ubiquitination assay clearly showed that OsSIRF1 Possess an E3 ligase activity. Moreover, OsSIRF1 was found to be localized to the nucleus within the cell. Heterogeneous overexpression of OsSIRF1 in Arabidopsis improved seed germination and increased root length under salt and Manitol stress conditions. Taking together, these results suggested that OsSIRF1 may be associated with plant responses to abiotic stressors and positively regulates salt and osmotic stress environment.

  • PDF

Enhanced Resistance of Transgenic Sweetpotato (Ipomoea batatas Lam.) Plants to Multiple Environmental Stresses Treated with Combination of Water Stress, High Light and High Temperature Stresses

  • Song, Sun-Wha;Kwak, Sang-Soo;Lim, Soon;Kwon, Suk-Yoon;Lee, Haeng-Soon;Park, Yong-Mok
    • Journal of Ecology and Environment
    • /
    • v.29 no.5
    • /
    • pp.479-484
    • /
    • 2006
  • Ecophysiological parameters of non-transgenic sweetpotato (NT) and transgenic sweetpotato (SSA) plants were compared to evaluate their resistance to multiple environmental stresses. Stomatal conductance and transpiration rate in NT plants decreased markedly from Day 6 after water was withheld, whereas those values in SSA plants showed relatively higher level during this period. Osmotic potential in SSA plants was reduced more negatively as leaf water potential decreased from Day 8 after dehydration treatment, while such reduction was not shown in NT plants under water stressed condition. SSA plants showed less membrane damage than in NT plants. As water stress and high light stress, were synchronously applied to NT and SSA plants maximal photochemical efficiency of PS II ($F_v/F_m$) in NT plants markedly decreased, while that in SSA plants was maintained relatively higher level. This trend of changes in $F_v/F_m$ between SSA plants and NT plants was more conspicuous as simultaneously treated with water stress, high light and high temperature stress. These results indicate that SSA plants are more resistive than NT plants to multiple environmental stresses and the enhanced resistive characteristics in SSA plants are based on osmotic adjustment under water stress condition and tolerance of membrane.

Identification and Characterization of the Aquaporin Gene aqpA in a Filamentous Fungus Aspergillus nidulans (사상성 진균 Aspergillus nidulans에서 아쿠아포린 유전자 aqpA의 분리 및 분석)

  • Oh, Dong-Soon;Lu, Han-Yan;Han, Kap-Hoon
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.295-301
    • /
    • 2011
  • Aquaporin is a water channel protein, which is classified as Major Intrinsic Protein (MIP), found in almost all organisms from bacteria to human. To date, more than 200 members of this family were identified. There are two major categories of MIP channels, orthodox aquaporins and aquaglyceroporins, which facilitate the diffusion across biological membranes of water or glycerol and other uncharged compounds, respectively. The full genome sequencing of various fungal species revealed 3 to 5 aquaporins in their genome. Although some functions of aquaporins found in yeast were characterized, however, no functional characteristics were studied so far in filamentous fungi, including Aspergillus sp. In this study, one orthodox aquaporin homolog gene, aqpA, and four aquaglyceroporin homologs, aqpB-E, in a model filamentous fungus Aspergillus nidulans were identified and the function of the aqpA gene was characterized. Knock-out of the aqpA gene didn't show any obvious phenotypic change under the osmotic stress, indicating that the function of the gene does not involved in the osmotic stress response or the function could be redundant. However, the mutant showed antifungal susceptibility resistance phenotype, suggesting that the function of the aqpA gene could be involved in sensing the antifungal substances rather than the osmotic stress response.

Comparison of Adjustments to Drought Stress Among Seedlings of Several Oak Species

  • Kim, Joon-Ho
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.343-347
    • /
    • 1994
  • In order to compare the adjustment of 6 oak species to water stress, the components of water status, tissue elastic modulus, free proline content of leaves and morphological characteristics were determined in pot culture. uercus dentata and . mongolica responded effectively to drought with high root : shoot (R/S) ratio or maintenance of high turgor pressure by large and fast osmotic adjustment and . variabilis with maintenance of high turgor pressure by low elastic modulus under drought. Meanwhile, . aliena and . serrata responded effectively with low omotic potential (Ψo) at full saturation and . acutissima with long root in spite of rigid cell wall and high osmotic potential (Ψo) at full saturation. Proline content in leaves of . dentata, . mongolica and . aliena increased early and rapidly at high leaf water potential (Ψleaf). The results indicate that 6 oak species have adjustment different from each other to water stress.

  • PDF

Physiological Responses of Gray Mullet Mugil cephalus to Low-pH Water (사육수의 pH변화가 숭어(Mugil cephalus)에 미치는 생리적 영향)

  • Moon, Hye-Na;Park, Jin-Hee;Park, Cheonman;Namgung, Jin;Kim, Ki-Hyuk;Yeo, In-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.2
    • /
    • pp.153-159
    • /
    • 2017
  • We examined changes in the physiological responses of gray mullet Mugil cephalus exposed to acidic seawater (pH 6.0, 6.5, 7.0) and normal seawater (pH 8.0, control) for 15 days. As pH decreased, survival rate and body weight also decreased. Levels of aminotransferase, total protein and triglycerides also differed significantly with changes in pH, presumably due to stress caused by exposure to acidic water. The level of osmotic pressure was significantly higher in the pH 6.0 group than in other groups. Superoxide dismutase was significantly higher in the pH 6.5 and 7.0 groups than in the pH 8.0 group, and glutathione level was lowest in the pH 6.0 group. We conclude that decreasing the pH level of seawater induces a stress response in fish, damaging their ability to control their hematological and osmotic pressure. Antioxidant enzymes are generally sensitive to osmotic stress; in this study, antioxidant activity significantly changed with pH level. These results indicate that physiological stress induced by exposure to acidification reduces survival rates and inhibits growth in M. cephalus.