• 제목/요약/키워드: Osmoregulation

검색결과 56건 처리시간 0.019초

어류의 아기미의 조직학적 구조와 병변 (The histological structure and the pathological lesions of gill in teleosts)

  • 허민도;정현도
    • 한국어병학회지
    • /
    • 제6권1호
    • /
    • pp.65-70
    • /
    • 1993
  • 아가미는 체조직 중에서도 가장 섬세하고도 미묘하게 적응된 조직학적 구조를 갖고 있을 뿐 아니라 환경수에 직접 노출되어 있기 때문에 수중의 각종 생물학적 및 물리화학적 유해인자에 쉽게 영향을 받을 수 있는 곳이다. 아가미를 구성하는 조직성분중에서도 특히 이차새변상피는 단층 내지 두층의 얇은 상피세포로 구성되어 있어 효율적인 가스교환을 할 수 있게 하지만, 이러한 구조의 특수성이 오히려 각종 유해 인자의 침입 또는 이들에 의한 손상을 쉽게 할 수 있다. 아가미는 호흡기능 뿐만 아니라, 장 및 신장과 함께 삼투압의 조절, 노폐물의 배설의 기능도 갖는다. 그러므로, 새변상피의 괴사나 비후와 같은 형태학적 변화는 호흡, 분비 및 배설기능의 장애를 야기할 수 있으므로 새변상피의 기능적 및 형태학적 유지는 무엇보다 중요하다 하겠다. 여기에서는 어떤 특정질병 또는 원인체에 관련한 병리조직학적 변화보다는 일반적으로 아가미조직의 조직학적 특수성을 우선 깊이 이해하고, 그 특성에 관련된 비특이적인 병리조직학적 변화를 중심으로 기술함으로써, 특정 원인체와의 병리조직학적 반응에 대한 보다 정확한 해석을 기하고자 이미 보고 및 출판된 정보를 토대로 하여 여기에 정리하였다.

  • PDF

Growth and solute pattern of Suaeda maritima and Suaeda asparagoides in an abandoned salt field

  • Choi, Sung-Chul;Lim, Sung-Hwan;Kim, Sang-Hun;Choi, Deok-Gyun;Kim, Jong-Guk;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • 제35권4호
    • /
    • pp.351-358
    • /
    • 2012
  • To investigate the environmental adaptation and ecophysiological characteristics of Suaeda maritima and S. asparagoides under saline conditions, plant growth and density were analyzed according to environmental changes of habitats. The total ion content of soil decreased with time, which was caused by the predominance of exchangeable $Na^+$ and $Cl^-$ in the upper layers. The population of S. maritima was more densely distributed in the region with higher ion contents of $Cl^-$, $Mg^{2+}$, $K^+$ and $Na^+$ than the population of S. asparagoides. Both species were showed a decreased population density according to increases in plant growth. Under the conditions of a salt field, S. maritima and S. asparagoides contained high inorganic ions to maintain low water potential, but low water soluble carbohydrate contents. In the case of free amino acid, S. maritima showed an especially high proline content, and contained rather large amounts of free amino acids, whereas S. asparagoides did not. Both species showed high inorganic ion contents in the leaves, which might be a mechanism of avoiding the ionic toxicity by diluting the accumulated ionic concentration with a high ratio of water content to dry weight. This result suggests that S. maritima seems to adapt to saline conditions by accumulating proline in addition to inorganic ions. S. asparagoides seems to adapt by osmoregulation processes, using inorganic ions rather than free amino acids.

A Bioactive Fraction from Streptomyces sp. Enhances Maize Tolerance against Drought Stress

  • Warrad, Mona;Hassan, Yasser M.;Mohamed, Mahmoud S.M.;Hagagy, Nashwa;Al-Maghrabi, Omar A.;Selim, Samy;Saleh, Ahmed M.;AbdElgawad, Hamada
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권8호
    • /
    • pp.1156-1168
    • /
    • 2020
  • Drought stress is threatening the growth and productivity of many economical crops. Therefore, it is necessary to establish innovative and efficient approaches for improving crop growth and productivity. Here we investigated the potentials of the cell-free extract of Actinobacteria (Ac) isolated from a semi-arid habitat (Al-Jouf region, Saudi Arabia) to recover the reduction in maize growth and improve the physiological stress tolerance induced by drought. Three Ac isolates were screened for production of secondary metabolites, antioxidant and antimicrobial activities. The isolate Ac3 revealed the highest levels of flavonoids, antioxidant and antimicrobial activities in addition to having abilities to produce siderophores and phytohormones. Based on seed germination experiment, the selected bioactive fraction of Ac3 cell-free extract (F2.7, containing mainly isoquercetin), increased the growth and photosynthesis rate under drought stress. Moreover, F2.7 application significantly alleviated drought stress-induced increases in H2O2, lipid peroxidation (MDA) and protein oxidation (protein carbonyls). It also increased total antioxidant power and molecular antioxidant levels (total ascorbate, glutathione and tocopherols). F2.7 improved the primary metabolism of stressed maize plants; for example, it increased in several individuals of soluble carbohydrates, organic acids, amino acids, and fatty acids. Interestingly, to reduce stress impact, F2.7 accumulated some compatible solutes including total soluble sugars, sucrose and proline. Hence, this comprehensive assessment recommends the potentials of actinobacterial cell-free extract as an alternative ecofriendly approach to improve crop growth and quality under water deficit conditions.

Genomic Analysis of the Moderately Haloalkaliphilic Bacterium Oceanobacillus kimchii Strain X50T with Improved High-Quality Draft Genome Sequences

  • Hyun, Dong-Wook;Whon, Tae Woong;Kim, Joon-Yong;Kim, Pil Soo;Shin, Na-Ri;Kim, Min-Soo;Bae, Jin-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권12호
    • /
    • pp.1971-1976
    • /
    • 2015
  • Oceanobacillus kimchii is a member of the genus Oceanobacillus within the family Bacillaceae. Species of the Oceanobacillus possess moderate haloalkaliphilic features and originate from various alkali or salty environments. The haloalkaliphilic characteristics of Oceanobacillus advocate they may have possible uses in biotechnological and industrial applications, such as alkaline enzyme production and biodegradation. This study presents the draft genome sequence of O. kimchii X50T and its annotation. Furthermore, comparative genomic analysis of O. kimchii X50T was performed with two previously reported Oceanobacillus genome sequences. The 3,822,411 base-pair genome contains 3,792 protein-coding genes and 80 RNA genes with an average G+C content of 35.18 mol%. The strain carried 67 and 13 predicted genes annotated with transport system and osmoregulation, respectively, which support the tolerance phenotype of the strain in high-alkali and high-salt environments.

Regulation of AQP-4 Water Channel Expression in the Brain during Development and by Ischemia

  • Jung, Jin-Sup;Kim, Hae-Gyu;Bae, Hae-Rahn;Suh, Duk-Joon;Park, Hwan-Tae;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권5호
    • /
    • pp.495-504
    • /
    • 1997
  • Water transport is mediated by two distinct pathways, diffusional and channel-mediated water transport. The first molecular water channel was identified from human erythrocytes in 1992. Genetically-related proteins from other mammalian tissues have subsequently been identified to transport water, and the group is referred to as th "Aquaporins". Aquaporin-4 (AQP4) is most abundant in the brain, which may be involved in CSF reabsorption and osmoregulation. However, ontogeny and regulatory mechanisms of AQP4 channels have not been reported. Northern blot analysis showed that AQP4 mRNA began to be expressed in the brain just before birth and that its expression gradually increased by PN7 and then decreased at adult level. AQP4 was expressed predominantly in the ependymal cells of ventricles in newborn rats. And then its expression decreased in ependymal cells and increased gradually in other regions including supraoptic and paraventricular nuclei. AQP4 is also expressed in the subfornical organ, in which the expression level is not changed after birth. Cryogenic brain injury did not affect expression of AQP4 mRNA, while ischemic brain injury decreased it. Osmotic water permeability of AQP4 channel expressed in Xenopus oocytes was inhibited by the pretreatment of BAPTA/AM and calmidazolium, a $Ca^{2+}/Calmodulin$ kinase inhibitor, in a dose-dependent manner. These results indicate that the expression and the function of AQP4 channel are regulated by developmental processes and various pathophysiological conditions. These results will contribute to the understanding of fluid balance in the central nervous system and the osmoregulatory mechanisms of the body.

  • PDF

The effect on photosynthesis and osmotic regulation in Beta vulgaris L. var. Flavescens DC. by salt stress

  • Choi, Deok-Gyun;Hwang, Jeong-Sook;Choi, Sung-Chul;Lim, Sung-Hwan;Kim, Jong-Guk;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • 제39권1호
    • /
    • pp.81-90
    • /
    • 2016
  • This study was to investigate the effect of salt stress on physiological characteristics such as plant growth, photosynthesis, solutes related to osmoregulation of Beta vulgaris. A significant increase of dry weight was observed in 50 mM and 100 mM NaCl. The contents of Chl a, b and carotenoid were lower in NaCl treatments than the control. On 14 day after NaCl treatment, photosynthetic rate (PN), the transpiration rate (E) and stomatal conductance of CO2 (gs) were reduced by NaCl treatment. On 28 day after NaCl treatment, the significant reduction in gs and E was shown in NaCl 200 mM. However, PN and water use efficiency (WUE) in all NaCl treatments showed higher value than that of control. Total ion contents (TIC) and osmolality were higher than the control. On 14 day after treatment, the contents of proline (Pro) increased significantly in 200 mM and 300 mM NaCl concentration compared with control, whereas on 28 day in all treatments it was lower than that of the control. The contents of glycine betaine (GB) increased with the increase of NaCl concentration. The contents of Na+, Cl-, GB, osmolality and TIC increased with the increase of NaCl concentrations. These results suggested that under severe NaCl stress conditions, NaCl treatment did not induce photochemical inhibition on fluorescence in the leaves of B. vulgaris, but the reduction of chlorophyll contents was related in a decrease in leaf production. Furthermore, increased GB as well as Na+ and Cl- contents resulted in a increase of osmolality, which can help to overcome NaCl stress.

어린 숭어(Mugil cephalus)의 담수사육에서 염분흡착 사료가 성장, 생존율 및 체액의 조성에 미치는 영향 (Effects of Supplemented Salt in the Diet on Survival, Growth and Body Fluid Composition of Juvenile Grey Mullet (Mugil cephalus) Reared in Freshwater)

  • 추청;장영진;허준욱
    • 한국양식학회지
    • /
    • 제13권4호
    • /
    • pp.317-323
    • /
    • 2000
  • 숭어 치어의 담수 사육을 위한 저염분 순화방법과 이에 따른 적응 능력을 높이기 위하여 염분사료를 공급하여 이에 따른 성장, 생존율 및 어체의 생리상태를 비염분사료구와 비교하였다. 실험 종료시 전장과 체중의 성장률은 해수사육구(SWN), 순차적으로 담수로 옮긴 염분사료구(GFWS) 및 순차적으로 담수로 옮긴 비염분사료구(GFWN)에서 빠르게 담수로 옮긴 염분사료구(FWS) 및 빠르게 담수로 옮긴 비염분사료구(FWN) 순서로 나타났다. 비만도는 모든 실험구에서 서로 차이를 보이지 않았다. 실험어의 생존율은 순차적으로 담수로 옮긴 염분사료구가 92.2${\pm}$2.2%로 가장 높았으나, 다른 실험구와 차이가 없었다. 어체의 수분함량은 빠르게 담수로 옮긴 비염분사료구에서 해수구보다 높게 나타나 차이를 보였다. 체액의 삼투질 농도는 실험 종료시에 모든 실험구에서 차이를 보이지 않았다. $Na^+$ 농도는 실험 종료시 해수사육구, 순차적으로 담수로 옮긴 비염분사료구, 순차적으로 담수로 옮긴 염분사료구 및 빠르게 담수로 옮긴 비염분사료구에서 차이를 보이지 않았다. 체액의 K/$^+$ 농도는 실험 종료시 해수사육구가 다른 실험구에 비교해 높은 수준을 나타냈다.

  • PDF

Hypoosmotic shock adaptation by prolactin involves upregulation of arginine vasotocin and osmotic stress transcription factor 1 mRNA in the cinnamon clownfish Amphiprion melanopus

  • Park, Mi Seon;Kim, Na Na;Shin, Hyun Suk;Min, Byung Hwa;Kil, Gyung-Suk;Cho, Sung Hwoan;Choi, Cheol Young
    • Animal cells and systems
    • /
    • 제16권5호
    • /
    • pp.391-399
    • /
    • 2012
  • We cloned cDNA-encoding arginine vasotocin (AVT) from the brain of the cinnamon clownfish Amphiprion melanopus, and that was predicted to encode a protein of 153 amino acids. We examined changes in the expression of AVT mRNA in the brain and arginine vasotocin receptor (AVTR) mRNA and osmotic stress transcription factor 1 (OSTF1) mRNA in the gills of the cinnamon clownfish using quantitative real-time PCR in an osmotically changing environment (seawater (35 psu) ${\rightarrow}$ brackish water (BW, 17.5 psu) and BW with prolactin [PRL]). The expression of AVT, AVTR, and OSTF1 mRNA in the brain and gills increased after transfer to BW, and the expression was repressed by PRL treatment. AVT-immunoreactive cells were almost consistently observed in the telencephalon. The plasma $Na^+$ and $Cl^-$ levels decreased in BW, but the level of this parameter increased in BW with PRL treatme during salinity change. These results suggest that AVT, AVTR, and OSTF1 play important roles in hormonal regulation in osmoregulation organs, and that PRL improves the hyperosmoregulatory ability of cinnamon clownfish in BW environment.

해수순치에 따른 무지개송어 (Oncorhynchus mykiss)의 프로락틴 및 성장호르몬 유전자의 발현 변화 (Changes in Prolactin and Growth Hormone Gene Expression of Rainbow Trout Oncorhynchus mykiss Adapted to Seawater)

  • 신지혜;이철호;조미희;홍관의;김동수;손영창
    • 한국수산과학회지
    • /
    • 제44권3호
    • /
    • pp.225-231
    • /
    • 2011
  • Prolactin (PRL) plays an important role in freshwater (FW) osmoregulation by preventing the loss of ions and the uptake of water in fish. Growth hormone (GH) promotes acclimation to seawater (SW) in several teleosts. We acclimated rainbow trout Oncorhynchus mykiss weighting $68.2{\pm}16.6$, $138.3{\pm}24$, and $287.5{\pm}42.1$ g in separate experiments to SW under slow-acclimation (SSW) or acute-acclimation (ASW) conditions, and then examined the PRL and GH mRNA levels using the real-time quantitative polymerase chain reaction. The PRL mRNA levels in all three experimental groups decreased significantly with both the SSW and ASW treatments, as compared to a control group kept in FW for 30 days. The GH mRNA levels increased with ASW in the largest fish, whereas the levels in the other groups did not change significantly. The mortality rate of the largest fish was lower than for the other groups, whereas the growth rate among the three experimental groups did not differ significantly. The growth rate of the ASW group was highest for the smallest fish. These results suggest that SW acclimation is associated with the gene expression levels of PRL and GH in relatively large rainbow trout. In addition, the fish mortality and growth rate on FW-SW transfer seem to be related to body weight, and the SW acclimation method may be applied to the hatcheries industry.

염분변화에 따른 붉바리(Epinephelus akaara)와 대왕붉바리 (E. bruneus ♀×E. lanceolatus ♂)의 성장, 생존 및 스트레스 반응 (Effects of Salinity on the Growth, Survival and Stress Responses of Red Spotted Grouper Epinesphelus akaara and Hybrid Grouper E. akaara ♀ × E. lanceolatus ♂)

  • 임상구;한상범;임한규
    • 한국수산과학회지
    • /
    • 제49권5호
    • /
    • pp.612-619
    • /
    • 2016
  • In this study, we crossbred Epinephelus akaara and E. lanceolatus to produce a hybrid grouper with faster growth and adaptation to domestic aquaculture environments. The plasma cortisol and glucose levels and osmoregulation (stress response indicators) of the hybrid grouper, E. akaara ♀ × E. lanceolatus ♂, were investigated under several salinity levels (32, 24, 16, and 8 psu). The body lengths and weights of E. akaara (8.2 ± 0.1 cm, 8.3 ± 0.4 g) and the hybrid (8.6 ± 0.1 cm, 10.0 ± 0.4 g) were similar at the start of the experiment, but were significantly different at the end of the experiment. Juveniles of both E. akaara and the hybrid showed greater weight gain, specific growth, and feed conversion rate (FCR) under low salinity of 16 psu. Under the 8 psu treatment, the juvenile E. akaara all died, while the hybrid juveniles survived. Plasma cortisol levels were not affected by lower salinity in both species. The above results indicate that the hybrid is more tolerant of low salinity than is E. akaara, although both species exhibited higher growth and FCR at 16 psu, lower than the salinity of natural seawater. Thus, juveniles of both E. akaara and the hybrid can be more effectively cultured in brackish areas or waters with salinity lower than that of seawater.