Browse > Article
http://dx.doi.org/10.4014/jmb.1507.07077

Genomic Analysis of the Moderately Haloalkaliphilic Bacterium Oceanobacillus kimchii Strain X50T with Improved High-Quality Draft Genome Sequences  

Hyun, Dong-Wook (Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University)
Whon, Tae Woong (Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University)
Kim, Joon-Yong (Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University)
Kim, Pil Soo (Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University)
Shin, Na-Ri (Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University)
Kim, Min-Soo (Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University)
Bae, Jin-Woo (Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.12, 2015 , pp. 1971-1976 More about this Journal
Abstract
Oceanobacillus kimchii is a member of the genus Oceanobacillus within the family Bacillaceae. Species of the Oceanobacillus possess moderate haloalkaliphilic features and originate from various alkali or salty environments. The haloalkaliphilic characteristics of Oceanobacillus advocate they may have possible uses in biotechnological and industrial applications, such as alkaline enzyme production and biodegradation. This study presents the draft genome sequence of O. kimchii X50T and its annotation. Furthermore, comparative genomic analysis of O. kimchii X50T was performed with two previously reported Oceanobacillus genome sequences. The 3,822,411 base-pair genome contains 3,792 protein-coding genes and 80 RNA genes with an average G+C content of 35.18 mol%. The strain carried 67 and 13 predicted genes annotated with transport system and osmoregulation, respectively, which support the tolerance phenotype of the strain in high-alkali and high-salt environments.
Keywords
Moderately halophile; alkaliphile; Oceanobacillus; Oceanobacillus kimchii; Bacillaceae;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Galinski EA. 1993. Compatible solutes of halophilic eubacteria - molecular principles, water-solute interaction, stress protection. Experientia 49: 487-496.   DOI
2 Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, et al. 2010. The Pfam protein families database. Nucleic Acids Res. 38: D211-D222.   DOI
3 Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376.   DOI
4 Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23: 673-679.   DOI
5 DasSarma S, DasSarma P. 2001. Halophiles. In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd., NY.
6 Le Borgne S, Paniagua D, Vazquez-Duhalt R. 2008. Biodegradation of organic pollutants by halophilic bacteria and archaea. J. Mol. Microbiol. Biotechnol. 15: 74-92.   DOI
7 Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery D W. 2007. RNA mer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35: 3100-3108.   DOI
8 Krulwich TA, Sachs G, Padan E. 2011. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 9: 330-343.   DOI
9 Krulwich TA, Ito M. 2013. Alkaliphilic Prokaryotes, pp. 441-469. In Rosenberg E, DeLong E, Lory S, Stackebrandt E, Thompson F (eds.). The Prokaryotes. Springer, Berlin-Heidelberg.
10 Kluge AG, Farris JS. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool. 18: 1-32.   DOI
11 Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62: 716-721.   DOI
12 Hirota K, Hanaoka Y, Nodasaka Y, Yumoto I. 2013. Oceanobacillus polygoni sp. nov., a facultatively alkaliphile isolated from indigo fermentation fluid. Int. J. Syst. Evol. Microbiol. 63: 3307-3312.   DOI
13 Hirota K, Aino K, Nodasaka Y, Yumoto I. 2013. Oceanobacillus indicireducens sp. nov., a facultative alkaliphile that reduces an indigo dye. Int. J. Syst. Evol. Microbiol. 63: 1437-1442.   DOI
14 Graham RL, Pollock CE, O'Loughlin SN, Ternan NG, Weatherly DB, Tarleton RL, McMullan G. 2007. Multidimensional analysis of the insoluble sub-proteome of Oceanobacillus iheyensis HTE831, an alkaliphilic and halotolerant deep-sea bacterium isolated from the Iheya ridge. Proteomics 7: 82-91.   DOI
15 Roux V, Million M, Robert C, Magne A, Raoult D. 2013. Non-contiguous finished genome sequence and description of Oceanobacillus massiliensis sp. nov. Stand. Genomic Sci. 9: 370-384.   DOI
16 Roberts MF. 2005. Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst. 1: 5.   DOI
17 Pruitt KD, Tatusova T, Brown GR, Maglott DR. 2012. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 40: D130-D135.   DOI
18 Namwong S, Tanasupawat S, Lee KC, Lee JS. 2009. Oceanobacillus kapialis sp. nov., from fermented shrimp paste in Thailand. Int. J. Syst. Evol. Microbiol. 59: 2254-2259.   DOI
19 Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NC. 2009. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25: 2271-2278.   DOI
20 Lu J, Nogi Y, Takami H. 2001. Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiol. Lett. 205: 291-297.   DOI
21 Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955-964.   DOI
22 Liolios K, Chen IM, Mavromatis K, Tavernarakis N, Hugenholtz P, Markowitz VM, Kyrpides NC. 2010. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res. 38: D346-D354.   DOI
23 Lee SY, Oh TK, Kim W, Yoon JH. 2010. Oceanobacillus locisalsi sp. nov., isolated from a marine solar saltern. Int. J. Syst. Evol. Microbiol. 60: 2758-2762.   DOI
24 Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. 2011. PHAST: a fast phage search tool. Nucleic Acids Res. 39: W347-W352.   DOI
25 Whon TW, Jung MJ, Roh SW, Nam YD, Park EJ, Shin KS, Bae JW. 2010. Oceanobacillus kimchii sp. nov. isolated from a traditional Korean fermented food. J. Microbiol. 48: 862-866.   DOI
26 Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.   DOI
27 Tatusov RL, Galperin MY, Natale DA, Koonin EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28: 33-36.   DOI
28 Sarethy IP, Saxena Y, Kapoor A , Sharma M , Sharma SK, Gupta V, Gupta S. 2011. Alkaliphilic bacteria: applications in industrial biotechnology. J. Ind. Microbiol. Biotechnol. 38: 769-790.   DOI
29 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.   DOI
30 Takami H, Takaki Y, Uchiyama I. 2002. Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res. 30: 3927-3935.   DOI
31 Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.