• Title/Summary/Keyword: Oscillation Control

Search Result 499, Processing Time 0.029 seconds

Effects of the length the MSL on the oscillation characteristic of the VCO (VCO의 MSL길이가 발진특성에 미치는 영향)

  • 이동희;정진휘
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.721-724
    • /
    • 2001
  • In this paper, we present the effect the length the MSL(Microstrip Line) on the oscillation characteristic of the fabricated VCOs(Voltage Controlled Oscillator) designed and analyzed by RF circuit simulator Serenade(ANSOFT Co.) and fabricated by screen printing method on the alumina substrate. We have fabricated VCOs with 3 different MSL length and each MSL length of the VCO is 140mi1, 280mil and 560mi1. The oscillation frequency of each sample(VCO) was tuned to UHF band(750MHz∼900MHz) varying the capacitance. The experimental result shows the phase noise -82∼-97[dBc/Hz] at a 50 [kHz] offset frequency, the pushing figure 94∼318[kHz] at 3${\pm}$0.15[V] and the harmonics 13∼21 [dBc] between MSL length 140mi1s and 560mi1. The frequency and output variation width are 779∼898[MHz], -36∼-33[dBm] at MSL length 140mi1; 818∼836[MHz], -27.19∼-27.06[dBm] at 280mi1;751.54∼751.198[MHz],-33.44∼ -33.31[dBm] at 560mi1. we examined 3 VCOs oscillation characteristic difference through comparison with phase noise, oscillation power and frequency by control voltage change, harmonics and pushing figure for each sample.

  • PDF

An Antenna-Integrated Oscillator Design Providing Convenient Control over the Operating Frequency and Output Power (동작주파수 및 출력파워 조절이 용이한 신호생성용 안테나 설계)

  • Lee, Dong-Ho;Lee, Jong-In;Kim, Mun-Il
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.1
    • /
    • pp.54-58
    • /
    • 2006
  • A new design for easily controlling operating frequency of an antenna-integrated planar oscillator is introduced. The oscillator circuit of a broadband negative-resistance active part and a passive load including a patch antenna. The patch resonance is used for determining the oscillation frequency. This design reduces the possibility of mismatch between antenna radiation and oscillation frequencies. To achieve optimum output power, load-pull simulation for the negative-resistance circuit is used. The load-pull simulation shows the feed point and the delay of feed line can affect the oscillation power. Two negative-resistance circuits capable of supporting oscillation over full C-band and X-band are fabricated. The oscillation frequency, output power and phase noise for different patch antennas are measured.

  • PDF

Regulation of Branched-Chain, and Sulfur-Containing Amino Acid Metabolism by Glutathione during Ultradian Metabolic Oscillation of Saccharomyces cerevisiae

  • Sohn Ho- Yong;Kum Eun-Joo;Kwon Gi-Seok;Jin Ingnyol;Kuriyama Hiroshi
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.375-380
    • /
    • 2005
  • Autonomous ultradian metabolic oscillation (T$\simeq$50 min) was detected in an aerobic chemostat culture of Saccharomyces cerevisiae. A pulse injection of GSH (a reduced form of glutathione) into the culture induced a perturbation in metabolic oscillation, with respiratory inhibition caused by $H_2S$ burst pro-duction. As the production of $H_2S$ in the culture was controlled by different amino acids, we attempted to characterize the effects of GSH on amino acid metabolism, particularly with regard to branched chain and sulfur-containing amino acids. During stable metabolic oscillation, concentrations of intra-cellular glutamate, aspartate, threonine, valine, leucine, isoleucine, and cysteine were observed to oscil-late with the same periods of dissolved $O_2$ oscillation, although the oscillation amplitudes and maximal phases were shown to differ. The methionine concentration was stably maintained at 0.05 mM. When GSH (100 $\mu$M) was injected into the culture, cellular levels of branched chain amino acids increased dramatically with continuous $H_2S$production, whereas the cysteine and methionine concentrations were noticeably reduced. These results indicate that GSH-dependent perturbation occurs as the result of the promotion of branched chain amino acid synthesis and an attenuation of cysteine and methionine synthesis, both of which activate the generation of $H_2S$. In a low sulfate medium containing 2.5 mM sulfate, the GSH injections did not result in perturbations of dissolved $O_2$ NAD(P)H redox oscillations without burst $H_2S$ production. This suggests that GSH-dependent perturbation is intimately linked with the metabolism of branched-chain amino acids and $H_2S$ generation, rather than with direct GSH-GSSG redox control.

Feedback Control of a Circular Cylinder Wake with Rotational Oscillation (주기적 회전을 이용한 원봉 후류의 되먹임 제어)

  • Baek, Seung-Jin;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.265-270
    • /
    • 2001
  • This study presents a feedback control methodology for suppression of the vortex shedding from a circular cylinder in a uniform flow. A rotational oscillation is applied as a controlled forcing and the lift coefficient ($C_L$) is used as a feedback signal. A feedback control concept is made based on the phase relation between the rotation velocity and $C_L$ at 'lock-on', The phase between the forcing and the vortex formation is changed $180^{\circ}$ from the phase of enhancing the lock-on state. This concept is examined by solving the Van del Pol equation. The results are satisfactory.

  • PDF

Motion Control of a Pneumatic Servo XY-Plotter using Neural Network (신경회로망을 이용한 공압서보 XY-플로터의 운동제어)

  • Hwang, Un-Kyoo;Cho, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.603-609
    • /
    • 2004
  • This paper deals with the issue of Neural Network-based control for a rodless pneumatic cylinder system which is utilized for a pneumatic XY-plotter. In order to identify the system design parameters, the open loop response of a pneumatic rodless cylinder controlled by a pneumatic servovalve is investigated by applying a self-excited oscillation method. Based on the system design parameters, the PD feedback compensator is designed and then Neural Network is incorporated with it. The experiment of a trajectory tracking control using a PD-NN has been performed and proved its excellent performance by comparing with that of a PD feedback compensator.

Resonance initial current compensation for Resonant DC-Link inverter (공진 DC-Link 인버터의 공진 초기전류의 보상에 관한 연구)

  • Kwak, Dong-Kurl;Suh, Ki-Young;Kwon, Soon-Kurl;Lee, Hyun-Woo;Woo, Jung-ln
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1136-1141
    • /
    • 1992
  • This paper proposes a control technique to obtain high frequency quasi sinusoidal DC-Link waveform permitting zero-voltage-switching(ZVS). This operation results in reduction of commutation stress and switching losses in the power devices because they cause no switching loss in principle. But in existing control methods, the resonant capacitor voltage is not frequently made of zero-cross oscillation. We propose an optimum control stratege which can sustain oscillation and keep the capacitor voltage at an allowable level. Some experimental results are included to confirm the validity of the analytical results.

  • PDF

CONTROLLER DESIGN FOR A ROBOTIC MANIPULATOR DELAYED FEEDBACK (Delayed Feedback을 이용한 로보트 제어기의 설계)

  • ;Chyung, Dong H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.145-148
    • /
    • 1990
  • In this paper, the problem of designing a feedback controller for a robotic manipulator, which is activated by a D.C. motor through a gear train and a flexible shaft or chain, is considered. When the response of the closed loop control system is relatively slow, a satisfactory controller may be designed as a PID controller. As the speed of the control system increases, however, the spring effect of the linkage becomes profound, and as a result, the transient response exhibits a substantial oscillation. To eliminate this oscillation, it is necessary to design the controller based on at least a fourth order system model. This, in turn, requires the feedback of the entire state variables. In practice, however, only the position of the manipulator and the velocity of the motor are readily measurable. The state variable reconstruction method or a state observer cannot be used because of the system nonlinearities such as the Coulomb frictions. In this study, an alternative controller, which is based on delayed feedback of the output variable only, is proposed, and a successful delayed feedback controller is designed and implemented on an actual experimental manipulator.

  • PDF

The study of Controlling chaos for BVP oscillation model by small parameter perturbation and hardware implementation (BVP 오실레이터 모델에서의 미소 파라미터 섭동에 의한 카오스 제어 및 하드웨어 구현)

  • Bae, Yeong-Chul;Suh, Sam-Moon;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.154-156
    • /
    • 1995
  • The effect of a periodic and a chaotic' behaviour in the Bonhoeffer-Van der Pol(BVP) oscillation of the nerve membrane driven by a periodic stimulating current $A_1=cos\;{\omega}\;t$ are investigated by numeric analysis and hardware Implementation. To control the chaotic motion, we are suggested by temperature parameter c, $c=c(1+\eta\;cos\;{\Omega}\;t)$ which the values of $\eta,\;Omega$ varied respectively. The feasibilities of chaotic and periodic phenomena were analysed by phase plane and time series.

  • PDF

Control of UPFG to Reduce Low Frequency Oscillation (저주파 진동 감쇠를 위한 UPFG의 제어)

  • Kim, Tae-Hyun;Seo, Jang-Cheol;Moon, Seung-Il;Park, Jong-Keun;Han, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.848-850
    • /
    • 1997
  • A control method of UPFC (Unified Power Flow Controller) to reduce low frequency oscillation is proposed. UPFC is modelled by voltage source, which magnitude and phase angle can be controlled. Because there needs some time to change to desired value, d-axis voltage and Q-axis voltage is modeled by 1st order delay. LQG(Linear Quadratic Gaussian) is used. It is shown that low frequency can be damped by control of UPFC effectively.

  • PDF

Primary Current Generation for a Contactless Power Transfer System Using Free Oscillation and Energy Injection Control

  • Li, Hao Leo;Hu, Aiguo Patrick;Covic, Grant Anthony
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.256-263
    • /
    • 2011
  • This paper utilizes free oscillation and energy injection principles to generate and control the high frequency current in the primary track of a contactless power transfer system. Here the primary power inverter maintains natural resonance while ensuring near constant current magnitude in the primary track as required for multiple independent loads. Such energy injection controllers exhibit low switching frequency and achieve ZCS (Zero Current Switching) by detecting the high frequency current, thus the switching stress, power losses and EMI of the inverter are low. An example full bridge topology is investigated for a contactless power transfer system with multiple pickups. Theoretical analysis, simulation and experimental results show that the proposed system has a fast and smooth start-up transient response. The output track current is fully controllable with a sufficiently good waveform for contactless power transfer applications.