• 제목/요약/키워드: Oscillating Circular Cylinder

검색결과 55건 처리시간 0.02초

고받음각 2차원 에어포일 주위의 비정상 유동의 진동 특성에 관한 연구 (ANALYSIS OF UNSTEADY OSCILLATING FLOW AROUND TWO DIMENSIONAL AIRFOIL AT HIGH ANGLE OF ATTACK)

  • 유재경;김재수
    • 한국전산유체공학회지
    • /
    • 제18권1호
    • /
    • pp.1-6
    • /
    • 2013
  • Missile and fighter aircraft have been challenged by low restoring nose-down pitching moment at high angle of attach. The consequence of weak nose-down pitching moment can be resulting in a deep stall condition. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance and safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed at high angle of attack up to 50 degrees around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.3 and Reynolds number of $10^5$. The lift, drag, pressure, entropy distribution, etc. are analyzed according to the angle of attack. The results of average lift coefficients are compared with other results according to the angle of attack. From a certain high angle of attack, the strong vortex formed by the leading edge are flowing downstream as like Karman vortex around a circular cylinder. The primary and secondary oscillating frequencies are analyzed by the effects of these unsteady aerodynamic characteristics.

SIMPLE Algorithm기반의 비압축성 Navier-Stokes Solver를 이용한 Immersed Boundary Method의 적용 (IMPLEMENTATION OF IMMERSED BOUNDARY METHOD TO INCOMPRESSIBLE NAVIER-STOKES SOLVER USING SIMPLE ALGORITHM)

  • 김건홍;박승오
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.44-53
    • /
    • 2012
  • Immersed boundary method(IBM) is a numerical scheme proposed to simulate flow field around complex objectives using simple Cartesian grid system. In the previous studies, the IBM has mostly been implemented to fractional step method based Navier-Stokes solvers. In this study, we implement the IBM to an incompressible Navier-Stokes solver which uses SIMPLE algorithm. The weight coefficients of the bi-linear and quadratic interpolation equations were formulated by using only geometric information of boundary to reconstruct velocities near IB. Flow around 2D circular cylinder at Re=40 and 100 was solved by using these formulations. It was found that the pressure buildup was not observed even when the bi-linear interpolation was adopted. The use of quadratic interpolation made the predicted aerodynamic forces in good agreement with those of previous studies. For an analysis of moving boundary, we smulated an oscillating circular cylinder with Re=100 and KC(Keulegan-Carpenter) number of 5. The predicted flow fields were compared with experimental data and they also showed good agreements.

주기적으로 회전진동하는 원주 후류의 유동구조에 관한 실험적 연구 (Experimental Study on Flow Structure of Wake Behind a Rotationally Oscillating Circular Cylinder)

  • 이정엽;이상준
    • 대한기계학회논문집B
    • /
    • 제30권4호
    • /
    • pp.298-305
    • /
    • 2006
  • The flow around a circular cylinder which oscillates rotationally with a relatively high forcing frequency has been investigated experimentally using flow visualization and hot-wire measurements. Dominant parameters are Reynolds number (Re), oscillation amplitude $({\theta}_A)$, and frequency ratio $F_R=f_f/f_n$, where $f_f$ is the forcing frequency and $f_n$ is the natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14{\times}10^3,\;{\theta}_A={\pi}/6$, and $0{\leq}F_R{\leq}2$. The effect of frequency ratio $F_R$ on the flow structure of wake was evaluated by measuring wake velocity profile and spectral analysis of hot-wire signal. Depending on the frequency ratio $F_R$, the cylinder wake has 5 different flow regimes. The vortex formation length and vortex shedding frequency are changed significantly before and after the lock-on regime. The drag coefficient was reduced under the condition of $F_R<1.0$ and the maximum drag reduction is about 33% at $F_R=0.8$. However, the drag is increased as $F_R$ increases beyond $F_R=1.0$. This active flow control method can be effective in aerodynamic applications, if the forcing parameters are selected optimally.

2차원 주상체의 강제 동요시 동유체력의 시간 영역 해석법에 관하여 (On the Improved Numerical Method for Hydrodynamic Forces Acting on an Arbitrary Cylinder in the Time Domain)

  • 신영섭;이기표
    • 대한조선학회지
    • /
    • 제27권1호
    • /
    • pp.63-72
    • /
    • 1990
  • 2차원 부유체가 자유 표면상의 평균 위치로 부터 작은 진폭의 비정상 운동을 할 때, 물체에 작용하는 선형 동유체력을 과도 Green 함수를 사용한 적분 방정식법에 의하여 시간 영역에서 수치해석 하였다. 특히 시간 영역에 따라 과도 Green 함수를 급수전개 또는 접근전개시킨 후 사용함으로써, 시간 영역에서 직접해석시에 단점으로 지적되고 있는 수치 계산 소요시간을 단축시켰다. 계산 예로는 원형 단면 주상체의 강제 상하동요 및 수평 동요시의 동유체력을 수치 해석 하였으며, Fourier 변환 후 진동수 영역에서의 해당 값과 비교 도시하였다.

  • PDF

규칙파중에서의 주상체의 대진폭 운동에 관한 연구 (On Two-Dimensional Large-Amplitude Motions in Regular Wave)

  • 김용직
    • 대한조선학회지
    • /
    • 제26권2호
    • /
    • pp.25-31
    • /
    • 1989
  • 정규칙파 중에서의 이차원 주상체의 대진폭 운동이 시간영역 수치계산법에 의해 다루어졌다. 물체표면 경계조건을 각 순간의 실제 물체표면에서 적용하므로 대진폭 운동에서 고려되어야 하는 물체 위치변화 및 형상변화 등에 의한 비선형효과가 고려되고 있으며, 자유표면에서의 비선형효과는 고려되지 않는다. 단순강제동요 및 자유동요문제에 적용된 바 있는 물체 표면 소오스 분포와 자유표면 스펙트럴 표현방법이 입사파의 강제력을 포함하도록 확장 적용되었고 물체의 운동응답은 시간적분법에 의해 계산되었다. 잠수 및 부유주상체의 대진폭 운동이 시간영역에서 직접 시뮬레이션되어 비선형 효과들이 보여지고 있으며, 대진폭 운동시 파강제력에 영향을 미치는 비선형효과가 고찰되어, 물체와 유체입자의 상대운동이 수평 및 수직방향 시간평균력들에 상당한 영향을 미침이 보여지고 있다.

  • PDF

저동하는 두 원통둘레의 정상류에 관한 연구 (Induced steady flow around two oscillating circular cylinders)

  • ;서룡권;한건모
    • 한국해양공학회지
    • /
    • 제1권1호
    • /
    • pp.65-72
    • /
    • 1987
  • 두개의 동일한 원통이 두중심점을 잇는 선에 대하여 수직인 방향으로 저동할때 발생되는 정상류에 대한 해를 구하였다. 관련된 자변수들간의 어떤 가정하에서 본문제는 Stokes문제가 될 수 있었다. 유동함수를 급수전개하였으며, 급수의 계수수함수는 penta-diagonal matrix를 풀어 구할 수 있었다. 해의 결과에 의하면 원통 주위에 몇개의 소용돌이가 생겼며 그소용돌이의 수는 두 원통간의 거리에 따라 달라 졌다. 두 원통간의 거리가 커짐에 따른 점근적 성질을 단일 원통의 경우와 비교하여 확인하였다.

  • PDF

초소형 의공학용 유영로봇을 위한 플래핑 평판들의 추력 발생 연구 (Study on the Thrust Generation of Flapping Flat Plates for Microscale Biomedical Swimming Robots)

  • 안상준;김용대;맹주성;한철희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.415-420
    • /
    • 2007
  • Creatures in nature flap their wings to generate fluid dynamic forces that are required for the locomotion. Small-size creatures do not use flapping wings. Thus, it is questionable at which Reynolds number the propulsion using the flapping wings are effective. In this paper, the onset conditions of the thrust generation from the combined motion of flat plates (heaving, pitching in the motion and also tandem, biplane in the array) is investigated using a Lattice Boltzmann method. To solve the pitching motion of the plate on the regularly spaced lattices, 2-D moving boundary condition was implemented. The present method is validated by comparing the wake patterns behind a oscillating circular cylinder and its hydrodynamic characteristics with the CFD results. Present method can be applied to the design of micro flapping propulsors for biomedical use.

  • PDF

보존적 중첩격자기법을 이용한 동적 플랩의 천이적 공력거동에 관한 수치적 연구 (Numerical Study on Transient Aerodynamics of Moving Flap Using Conservative Chimera Grid Method)

  • 최성욱;장근식;김인선
    • 한국전산유체공학회지
    • /
    • 제5권2호
    • /
    • pp.9-19
    • /
    • 2000
  • Transient aerodynamic response of an airfoil to a moving plane-flap is numerically investigated using the two-dimensional Euler equations with conservative Chimera grid method. A body moving relative to a stationary grid is treated by an overset grid bounded by a 'Dynamic Domain Dividing Line' which has an advantage for constructing a well-defined hole-cutting boundary. A conservative Chimera grid method with the dynamic domain-dividing line technique is applied and validated by solving the flowfield around a circular cylinder moving supersonic speed. The unsteady and transient characteristics of the flow solver are also examined by computations of an oscillating airfoil and a ramp pitching airfoil respectively. The transient aerodynamic behavior of an airfoil with a moving plane-flap is analyzed for various flow conditions such as deflecting rate of flap and free stream Mach number.

  • PDF

강제동요시 OWC형 파력발전 공기챔버의 공기반력 실험연구 (A Study of Pneumatic Reaction Force of Air Chamber for an OWC Type Wave Energy Device by Forced Heave Experiments)

  • 홍석원;최학선;류재문;김진하
    • 한국해양공학회지
    • /
    • 제19권3호
    • /
    • pp.11-17
    • /
    • 2005
  • The effect of frequency and amplitude of the OWC (Oscillating Water Column) motion on the nonlinear reaction forces in an air duct are studied experimentally. Experimental owe model is idealized as a simple circular cylinder with an orifice type air duct located at the middle oj the top rid. Reaction forces due to forced heave oscillation are measured and analyzed. By subtracting the effect of inertia forces and restoring forces, pneumatic damping force and added spring force are deduced. The effects of the frequency and amplitude of the heave motion are discussed. Also, the effects of solidity of the duct on the reaction forces are discussed.

보존적 중첩격자기법을 이용한 동적 플랩의 천이적 공력거동에 관한 수치적 연구 (Numerical Study on Transient Aerodynamics of Moving Flap Using Conservative Chimera Grid Method)

  • 최성욱;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.85-94
    • /
    • 1999
  • Transient aerodynamic response of an airfoil to a moving plane-flap is numerically investigated using two-dimensional Euler equations with conservative Chimera grid method. A body moving relative to a stationary grid is treated by an overset grid bounded by a 'dynamic domain-dividing line' the concept of which is developed in this study. A conservative Chimera grid method with a dynamic domain-dividing line technique is applied and validated by solving the flowfield around circular cylinder moving supersonic speed. The unsteady and transient characteristics of the flow solver is also examined by computations of a oscillating airfoil and a ramp pitching airfoil respectively. The transient aerodynamic behavior of an airfoil with a moving plane-flap is analyzed for various flow conditions such as deflecting rate of flap and free stream Mach number.

  • PDF