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® Technical Paper

Induced Steady Flow around Two Oscillating
Circular Cylinders*
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1. Introduction

Recently great efforts have been concentrated on
the wave forces acting on a single object or array
of objects as the model of the pile(s) of the offs-
hore structures.!»® However. most of the studies
have been concerned only with the oscillating mo-
tion of the wave. Batchelor derived the steady
streaming velocity on the body immersed in the
standing wave or in the progressive wave.?® He
pointed out that this streaming motion has conse-
quences of practical importance, such as transport
of sediment in the flow field. He also suggested
that the motion of wave could be replaced by the
oscillating motion of the body in analyzing the
streaming motion.

This paper finds an analytic solution for the

+Presented at the 1986 KCORE Autumn Conference

motion of the streaming flow induced by two equal
circular cylinders oscillating in the same frequency
to the direction normal to the center-line. Schlich-
ting* introduced the linearized equation of motion
for the amplitude smaller than the body scale, and
obtained the analytic solution wvalid in the thin
Stokes layer near the body. The steady streaming
motion around a single circular cylinder is then
obtained and compared with the experimental result.

Longuet-Higgins® extended the oscillating flow
problem to the water waves.

Very recently, Jenkins and Inman® used the
matched asympotic expansion method to obtain high-
er~order solution for a sphere in the water waves.
They found that from the boundary layer several
secondary motions were excited and torques and

forces were arised due to these flow motions. In
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this paper, bipolar coordinate is introduced to find
the series solution for the steady streaming motion
around the two equal circular cylinders., Assump-
tions are made ‘that the amplitude and the Stokes
layer thickness are much smaller than the diameter
of the cylinder, and that the amplitude is much
smaller than the Stokes layer thickness. The latter
condition is designed in order to make the steady
motion be a Stokes problem. Matched asymptotic
expansion method is utilized to formulate the pro-
blem with two small parameters.

The coefficient functions of the series expansion
are obtained by solving the penta-diagonal matrix
using the Thomas algorithm. Numerical results for
a few cases of distances between the two cylinders
show that the induced motion forms eddies around
the bodies. The direction of the current at a large
distance from the body is reversed as §ois increas-
ed. It is also found that the solution tends to that
of a single cylinder as the distance between the two

obstacles is increased.

2. Formulation of the Problem

Geometry to be concerned in the present study is
as shown in Fig.1l. The frame 1is fixed to the two
circular cylinders so that oscillation of the obstacles
is replaced by oscillation of the fluid. We consider
only the case in which oscillation takes place in
the normal direction to the line connecting two
centers(center-line). The flow field is assumed to
be two~dimensional, incompressible and laminar,
The governing equation for this problem will be
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v is the kinematic viscosity of the fluid, As the

where 2=

flow field should be symmetric about the x*-aris,

only the upper half domain ¥*>0 is of our concern,

Characteristic quantities will be U., 4, ©® upon
which the dimensionless variables are defined as
follows.
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Fig.1 Geometry of the problem
Then (1) reduces to
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Boundary conditions are
: . Ap _ a .
D=0; L= = =3
9(%,0,8)=0 s =0 on m=0
gy R
pi—»Real(e“) as 4/x2+ y?—oo (5)

ay
where 7 and s are the local coordinates along the

body and normal to it, respectively,

3. Matched Asymptotic Expansion
Method

For the time being, €: and ¢.? themselves only are
assumed to be small. Formal expansion of ¢ in the
matched asymptotic expansion method is

G =go(x, 3,5 ) +adi(®, 3,8 €)
+e?ha (X, 3, b; €)+--- (6)
Substituting (6) into (3), we get
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The leading order equation of (7) is

2 7%o—edo=0 ®

For small €2 we expect the thin inner layer(Stokes
layer) out of which the appropriate governing equ-

ation will be
0 2, —
eV %00

Solution of this can be represented in a separable

form as follows:

Po=p(%, 3)Real(e!")

where ¢, satisfies

Pos=0 ()
p(%,0) =03 i(’%=0 on n=0; ¢y as
g
JATF y2 oo (10)

Problem of (9) with (10) is just the potential flow
past the two circular cylinders ; the uniform flow
direction is clearly along the x-axis, Series solution
of (9) with (10) is®

& =a[1 + é‘l {20 = 1)%e~*¢ + C, sinh kE}] cos By

C, = "‘2("‘1),2

= 11
k= ekt sinh kE an
Where £, 7 are the bipolar coordinates defined as
. _asing _ _asinh{
coshf + cosz’ coshE+cosy’
a= %s inh £

and & is £ value of #=0. The relationship bet-
ween (%, y) and (& 7) is shown in Fig.2, Note that
series (11) is convergent except for £ =0 near which
the following expression can be used.

sinh &
cosh £ +cos n

92 Za[ + kfj C; sinh k€ cos kw;]
=1
With the inner variables
o= 2 €2v(s,Y), n= /DT &Y
the leading order equation for the Stokes layer
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Fig.2 The bipolar coordinate system

becomes

8 9%, 1 a4
D T R (12)

Boundary conditions are
Y RV,
Iro(s, =2Y0 =0 ; %Yo
Vou O) Y (s’ 0) 03 ay""
Vo(s)Real(ei*) as Y—rco,

Vo(s) = 2% 1-2)—’ +§}1 Ej cos kn,

D, = _2k(—~1D*1(cosh k&, + sinh ko)
¢¢o sinhkE,

Ep=Dy cosh o+ %(Dk_1 +Dyy1), (D,=0)

h in the above expression is the scale factor in the
(€,n) plane,

Solution of (12) can also be expressed in a sep~
arable form as follows :

Yro=Vo(s) Real [ Wo(Y)eit]

=Y+»(—1-;—Q[exp{—(1+i)Y}—1] (13)
The second order equation for ¢ in (7) is
B pag ez, = 9(Po, PPP0)
BT V (/)l €2 V ¢1—W (14)

where the right-hand side contains the steady term

as well as the unsteady one since {Real(ei*)}?=

%cos 2t+%. Consequently we split ¢; as follows :

AN~

1= +¢ (18)
where ~ stands for “unsteady” and ~ for “steady”.

The unsteady part of (14) is then



68 Yong-Kweon Suh, Sae-Wook Oh and Kun-Mo Han

SrPore (G

We first of all consider the outer region. In this
region (16) becomes

—F =0 an

The solution of the homogeneous equation (17) is
N
¢1=0 since the boundary conditions are also homo-
geneous. For the inner region, by ;/1\1= VTV,
(16) becomes
0 92 o
=1
F aYz‘J’x _2-3},4\!'1 5
[(WOWO”I WOIW0”>22H]
@y(s,0) = a‘y‘(s 0) =0
3‘}'1
Y
Solution of (18)

VodV"ReaI

0 as Y—oo (18)

¥, = ‘”’Real (Wi(Y)esty

T 1+4 _ ; S
wi(Y) = - V(L)Y ! Ye Uty
=gy le PtV =11+

Now we consider the lowest order equation of the
steady part in the outer region. The leading order
is either 0(€162%) (the
second term of the second line) or 0(e:®)(the fifth
term of the fourth line) depending on the order of

2 The full equation for ¢: is then

of the steady part in (7)

€1
IO P Wy
xR (D
This is the steady Navier-Stokes equation for ¢
with
~ 2
R, = (i) (20)
€2

The inhomogeneous boundary condition may be
set by matching with the solution in the Stokes
layer. The inner expansion for (ﬂis ¢T= N \’;71
upon which the steady part of the second line in
(7) reduces to

2 Gim LV Rea [T W
(5, 0) = "‘1’1(5 =0

o~

aa";,—-’fmxte as Y—ooo [@2))]

where the symbol bar denotes the conjugate of a
complex variable. Note that the boundary condition
for Yoo is inevitable due to the intrinsic nature

of the solution, Solution of (21) is

Vi= vo%‘s’—"v'ﬁm
Wl(Y) _8' Z.Y—_S_ e~ — ¢~ Y(—Z-cos Y+sinY
+5Y sin Y) (22)
Matching condition requires that
() ~G5%), .-
fo Yo

where & is the scale factor in the (E, 7) plane. Now

_3 Vo a'Vo (23)

the streaming motion of the fluld in the outer
region is governed by (19) with one of the boun-
dary conditions (23) at the wall. In the present
analysis we consider only the case for small Re i.e,
for

ei{ez (24)
by which (19) is approximated to the leading order
as follows :

P=0 (25)

Before attempting to solve the Stokes problem (25),

we contemplate about the three restrictions for €,
€, in connection with the physical quantities.
By U.=w8 where &y is the amplitude, (4 be-
comes
ard. 4t
which means that €, is the dimensionless amplitude.
€, turned out to be a dimensionless thickness of the
Stokes layer. Hence in terms of those quantities
the three assumptions made in the present study
are that the amplitude &; and th= Stokes layer
thickness \/17/70 are much smaller than the body

size and that 8 { +/v/w. For 20°C water, the above

three restrictions correspond roughly to ;}—2 {w{ éz

[1/sec] where d and 8, are in mm,

3. Steady Streaming Motion Based
on the Stokes Model

In the (& %) plane (25) becomes

712{(cosh £ + cos 212} =0 (26)
where
2 82 62
71 —TE"+ 6_712

The boundary conditions are

910, 77)=§~;$1(0, 7) = (27a)
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;’);(Eo, 7)=0 (27b)
ho‘f("o‘ n)=— *—V dVo (27¢)
di(Em) =%%‘/z)~‘(£, 7)=0 at =0, = (274)

The boundary condition (27¢) can he expressed

in a series form as follows :

[awlo 3‘2 Hg sin kn (28)

23

where
Hy=DikE;+ Fo+ Gy
h-1 ' I~
Fr= 3 iEiEy; (F1=0), Gi= k'Zl EiE; s
= iz

Considering (28), we may try to find the solu-
tion of the Stokes problem in the form

wl— 2 Ak@) sin kg

Then (2@) reduces to
A" — k24, =B, (29a)
F” =R =0 (29b)

fi =% BuatcoshE Buy+( 4 cosh2g+1)B,
= cosh § Buy +  Busz: (By=0 for £<1) (290)
The boundary conditions for Ay are
A(0) =4,"(0) =0, A(E) =0, A/(E)

=3H, (30)

Since from the first of (30) By(0)=0 for all &,
the general solution of (29b) must be the basis
smh k&
inh kEo
Basis for each B, can be decided upon giving

function multiplied by an arbitrary constant.

condition at £=0 or that at £=¢§o.
In the present study, we choose &;(£0) =1 where

by represents the basis of B, so that with an arbi-

trary constant I

By(E) =T1: 5:(E) (31)
Then from (29¢) we obtain

-é— bz + Bbp1+ by + BbH..l + ill—bk-ﬂ =1 (32)
where

b, =0 for k<1 and £>K
a=-%.cosh25+1, B=cosh &

(ot +B+1/4) sinh kE/sinh kEo for k=1, K
re= { (a+28+1/4) sinh kE/sinh kEo for k=2, K—1
(a+2B+1/2) sinh k¢ /sinh kEg for 3<A<K -2

— 6

and K is the number of equations of (32) after
truncated. It is assumed here that the series (28)
be well convergent for all £20 so that the trunc-

ated amount could not be that significant. Thomas
algorithm can be applied to (31) to yield
bk = C,,bk.H + dlzbk+2 + € (33)

where
= {dp(Craa/d+ B)+B}/(=V),
+ ep1(Co2/4+B)}1/V,
dp=1/(~4V), Ve=cp1(Chas/d+8) +dpz/d+a ;
cp=dy=e,=0 if 21,

ep=1[r,— {es_2/4

First, ¢4, d, and e, are calculated from #=1 up to
k=K, Then (33) is used to evaluate b, from #=K
to k=1. Solution of (29a) can be obtained by use
of the undetermined coefficient method as follows:

Ap="Tox sinh k€ + T'ixg(£) 3D
g(&)= ——[e"fj by(2)e*dz— e""ﬁ b, (2)etdz
[}
where T'op and Ty are determined from the boun-
dary conditions (30) as

Top=— ngle/(TllTZZ - Tlszl)
Ti=TuT2/(TuTz—T12T2)
Ty =sinhkfo, Ta=coshkE, Ti= 61]}5'(5")

Top= g;[e"fos %be(2)e " dz + e HEo (iobk(z)e"‘a’z]

Tas= o Hy

4. Asymptotic Solution near the
Body for a Large &

Near the body for a large &, the solution of the
present problem should approach that of a single
cylinder. In this case the boundary condition (28)

is approximated as

[%‘!’E—‘]E:go = % sin 27

which is of

(3%

the same form as that of a single
cylinder of the radius 0.5.
Further, (26) reduces to the leading order to

az ) ~
of 0% .
vz (arlzﬁunarl : 71287 )9/11 (36)
where szzrlj—(r, »‘3_) + —6—2—, and r;=efo~E1 ig
ar1 ory an?

twice the distance of a point in the flow field from
the center of the upper cylinder. It is clear that

since the asymptotic solution is only valid for large

9 —
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£ the boundary conditions on £=0 can not be im-
posed. Instead.

dr—finite as f1—00 (€)]
shall be used. Solution for (36) with (27b), (27d),
(35) and (37) is well known ;

d1= —.2_(1—9-261) sin 27 38

Note that JX—»—% sin2 n for £1—o0.

[}
3

Fig.4(a) Coefficient functions for &=1.0

5. Numerical Results and
Discussions

Numerical calculation is simple and straightlfor-
ward, The discretization scheme is applied only
to the integration, Streamline patterns (¢ =const.)
are given in Fig.3 for £=1.0, 2.0. In the quarter
v

P

(I N
; \

Fig.4(b) Coefficient functions for £=2.0



Irduced Steady Flow around Two Oscillating Circular Cylinders 71

A\,(g)

Fig.4(c) Coefficient functions for &=4.0

plane (x>0, y=0), there exist two bubbles for
£,=1.0. For §=2.0, there occurs
bubble so that the direction of the
large distance is reversed, Coefficient functions are
plotted in Fig.4. We note that A,(£) becomes more

one additional

flow at a

dominent as £ is increased ; this is consistent with
the asymptotic nature of the solution as analyzed in
section 4, The effect of truncation on the accuracy
of the numerics is confirmed for £,=2.0 as shown
in Fig.4(b) and Table 1, It is seen that this effect
is negligible for the change of the number of equ-
ations from 15 to 11. The asymptotic nature of the

present numerical solution is shown in Fig.5; it is

Table 1 Maximum absolute values of coefficient
functions for & =2.0 for K=11,15
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Fig.4(d) Coefficient functions for £ =8.0

noted that the range of validity of the asymptotic
solution (38) is widened and the numerical solution
tends to it as & is increased. Finally the velocity
at £=0, 7)=£— are calculated and shown in Table
2. It is to be noted that the order of the velocity
on the line of symmetry y=0 is not so much dec-
reased as the distance between the two cylinders
increases.

The numerical solution presented in this study is
valid near the body within the distance of the body
scale. As is common to the low Reynolds number
flow problem, the better solution will be obtained
by using the Oseen approximation method.

My

Fig.5 A,(&) for different & values

- _r
£=0, 7= for

Table 2 Velocities at 5=1.0,
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Another important point of view is that the Sto-
kes approximation treated in this study may be far
from being able to describe the flow field in the
severe ocean. For the actual application, therefore,
equation (19) must be solved numerically for large
Re. One method is to use the discretization scheme
for the full Navier-Stokes equation to the finite
region around the bodies. The other method is if
possible to use the matched asymptotic expansion
method for the three locally characterized region ;
the thin boundary layer near the bodies where the
classical boundary layer equation is valid, the jet
flow region where the asymptotic solution for the
boundary layer equation may be attained, and the
inviscid region where the Euler equation is valid.
Further investigation concerning this problem will

be of great interest,
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