• 제목/요약/키워드: Orthotropic Damage

Search Result 44, Processing Time 0.029 seconds

A dynamic nondestructive damage detection methodology for orthotropic plate structures

  • Gandomi, Amir Hossein;Sahab, Mohammad G.;Rahai, Alireza
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.223-239
    • /
    • 2011
  • This paper presents a methodology to detect and locate damages and faults in orthotropic plate structures. A specific damage index based on dynamic mode shapes of the damaged and undamaged structures has been introduced. The governing differential equation on transverse deformation, the transverse shear force equations and the invariant expression for the sum of transverse loading of an orthotropic plate are employed to obtain the aforementioned damage indices. The validity of the proposed methodology for isotropic and orthotropic damage states is demonstrated using a numerical example. It is shown that the algorithm is able to detect damages for both isotropic and orthotropic damage states acceptably.

Impact damage and residual bending strength of CFRP composite laminates involved difference of fiber stacking orientation and matrics

  • Sim, Jae-Ki;Yang, In-Young;Oh, Taek-Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.152-162
    • /
    • 1993
  • The purpose of this study is to investigate problems of residual bending strength and the impact damage experimentally when CFRP composite laminates are subjected to Foreign object damage. The specimens composed of four types of CR/EPOXY and a CF/PEEK composite laminates which involved difference of fiber stracking orientation and matrics. The result were summariged as follows : 1) It is found that both orthotropic and guasi-isotropic composite laminates are increasimg lineally between impact energy and damage delamination area. 2) Delamination devel- opment energy(mm$^{2}$J) OF cf/epoxy composite aminates is less than that of CF/PEEK. 3) When impact energy is applied to specimens within 3J, the residual strength of orthotropic is greater than guasi-isotropic composite laminates. On the other hand, it is predicted that residual bending strength of orthotropic composite laminates is less than that of quasi-isotropic when impact energy is more thaen 3J. 4) It is found in CF/PEEK that for the impact side compression, residual of bending strength versus impact energy is almost constant, while in case of impact side tension, residual bending strength is decreased rapidly near 1.2J. of impact energy due to the effect of delamination buckling.

  • PDF

The Analytical Study on the Cause of Fatigue Damage and the Improvement of Fatigue Performance for Orthotropic Steel Deck (강바닥판 피로손상 원인규명 및 피로성능 개선에 관한 해석적 연구)

  • Kyung Kab-Soo;Shin Dong-Ho;Kim Kyo-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.647-654
    • /
    • 2006
  • In orthotropic steel decks, it is likely to have defects due to fatigue damages because most of structural joints(the connection of longitudinal rib and transverse rib, the connection of deck plate and longitudinal rib) are connected by welds. However. orthotropic steel decks have many advantages. such as light weight and reduction of construction time. in comparison with concrete decks. Therefore. they are mostly used in long-span bridges and urban highway bridges. This study consists of the cause identication of fatigue damage and the suggestion of rational thickness on deck plate about the connection of deck plate and longitudinal rib. The results are as follows: fatigue damage cause at the connection of deck plate and longitudinal rib is local deformation in deck plate. And, rational thickness of deck plate is 16mm thickness.

  • PDF

Failure analysis of laminates by implementation of continuum damage mechanics in layer-wise finite element theory

  • Mohammadi, B.;Hosseini-Toudeshky, H.;Sadr-Lahidjani, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.657-674
    • /
    • 2009
  • In this paper a 3-D continuum damage mechanics formulation for composite laminates and its implementation into a finite element model that is based on the layer-wise laminate plate theory are described. In the damage formulation, each composite ply is treated as a homogeneous orthotropic material exhibiting orthotropic damage in the form of distributed microscopic cracks that are normal to the three principal material directions. The progressive damage of different angle ply composite laminates under quasi-static loading that exhibit the free edge effects are investigated. The effects of various numerical modeling parameters on the progressive damage response are investigated. It will be shown that the dominant damage mechanism in the lay-ups of [+30/-30]s and [+45/-45]s is matrix cracking. However, the lay-up of [+15/-15] may be delaminated in the vicinity of the edges and at $+{\theta}/-{\theta}$ layers interfaces.

Enhancing the ability of strain energy release rate criterion for fracture assessment of orthotropic materials under mixed-mode I/II loading considering the effect of crack tip damage zone

  • Khaji, Zahra;Fakoor, Mahdi
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.817-828
    • /
    • 2022
  • In this study, considering dissipated energy in fracture process zone (FPZ), a novel criterion based on maximum strain energy release rate (SER) for orthotropic materials is presented. General case of in-plane loading for cracks along the fibers is assumed. According to the experimental observations, crack propagation is supposed along the fibers and the reinforcement isotropic solid (RIS) concept is employed as a superior model for orthotropic materials. SER in crack initiation and propagation phases is investigated. Elastic properties of FPZ are extracted as a function of undamaged matrix media and micro-crack density. This criterion meaningfully links between dissipated energy due to toughening mechanisms of FPZ and the macroscopic fracture by defining stress intensity factors of the damaged zone. These coefficients are used in equations of maximum SER criterion. The effect of crack initiation angle and the damaged zone is considered simultaneously in this criterion and mode II stress intensity factor is extracted in terms of stress intensity factors of damage zone and crack initiation angle. This criterion can evaluate the effects of FPZ on the fracture behavior of orthotropic material. Good agreement between extracted fracture limit curves (FLC's) and available experimental data proves the ability of the new proposed criterion.

Stress distribution on the real corrosion surface of the orthotropic steel bridge deck

  • Kainuma, Shigenobu;Jeong, Young-Soo;Ahn, Jin-Hee
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1479-1492
    • /
    • 2015
  • This study evaluated the localized stress condition of the real corroded deck surface of an orthotropic steel bridge because severe corrosion damage on the deck surface and fatigue cracking were reported. Thus, a three-dimensional finite element (FE) analysis model was created based on measurements of the corroded orthotropic steel deck surface to examine the stress level dependence on the corrosion condition. Based on the FE analysis results, it could be confirmed that a high stress concentration and irregular stress distribution can develop on the deck surface. The stress level was also increased by approximately 1.3-1.5 times as a result of the irregular corroded surface. It was concluded that this stress concentration could increase the possibility of fatigue cracking in the deck surface because of the surface roughness of the orthotropic steel bridge deck.

Identification of the Structural Damages in a Cylindrical Shell (원통형 셸에 발생한 구조손상의 규명)

  • Kim, Sung-Hwan;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1586-1596
    • /
    • 2005
  • In this paper, a structural damage identification method (SDIM) is developed to identify the line crack-like directional damages generated within a cylindrical shell. First, the equations of motion for a damaged cylindrical shell are derived. Based on a theory of continuum damage mechanics, a small material volume containing a directional damage is represented by the effective orthotropic elastic stiffness, which is dependent of the size and the orientation of the damage with respect to the global coordinates. The present SDIM is then derived from the frequency response function (FRF) directly solved from the equations of motion of a damaged shell. In contrast with most existing SDIMs which require the modal parameters measured in both intact and damaged states, the present SDIM may require only the FRF-data measured at damaged state. By virtue of utilizing FRF-data, one may choose as many sets of excitation frequency and FRF measurement point as needed to acquire a sufficient number of equations for damage identification analysis. The numerically simulated damage identification tests are conducted to study the feasibility of the present SDIM.

A Study on the Impact Damage and Residual Bending Strength of CF/EPOXY Composite Laminate Plates Under High Temperature (고온분위기하에서 탄소섬유강화 복합재적층판의 충격손상과 잔류굽힘강도)

  • 양인영;박정수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1930-1938
    • /
    • 1994
  • In this paper, the effects of temperature change on the impact of CFRP laminates was experimentally studied. Composite laminates used for this experiment are CFRP orthotropic laminated plates, which have two-interfaces$[0_6^{\circ}/90_7^{\circ}]_s$ and four-interfaces$[0_3^{\circ}/90_6^{\circ}/0_3^{\circ}]_s$. The interrelations between the impact energy vs. delamination area, the impact energy vs. residual bending strength, and the interlayer delamination area vs. the decrease of the residual flexural strength of carbon fiber epoxy composite laminates subjected to FOD(Foreign Object Damage) under high temperatures were experimentally observed.

Numerical Experiment for a Strain Energy Equivalence Principle (SEEP)-based Continuum Damage Model (탄성변형에너지 등가원리 기반 연속체 손상모델에 대한 수치실험)

  • Youn, Deok-Ki;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.31-34
    • /
    • 2006
  • A new continuum damage theory (CDT) has been proposed by Lee et al. (1996) based on the SEEP. The CDT has the apparent advantage over the other related theories because the complete constitutive law can be readily derived by simply replacing the virgin elastic stiffness with the effective orthotropic elastic stiffness obtained by using the proposed continuum damage theory. In this paper, the CDT is evaluated by the numerical experiment comparing the mode shapes and natural frequencies of a square plate containing a small line-through crack with those of the same plate with a damaged site replaced with the effective orthotropic elastic stiffness computed by using the CDT.

  • PDF

Non-axisymmetric dynamic response of buried orthotropic cylindrical shells under moving load

  • Singh, V.P.;Dwivedi, J.P.;Upadhyay, P.C.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.39-51
    • /
    • 1999
  • The dynamic response of buried pipelines has gained considerable importance because these pipelines perform vital role in conducting energy, water, communication and transportation. After realizing the magnitude of damage, and hence, the human uncomfort and the economical losses, researchers have paid sincere attention to this problem. A number of papers have appeared in the past which discuss the different aspects of the problem. This paper presents a theoretical analysis of non-axisymmetric dynamic response of buried orthotropic cylindrical shell subjected to a moving load along the axis of the shell. The orthotropic shell has been buried in a homogeneous, isotropic and elastic medium of infinite extent. A thick shell theory including the effects of rotary inertia and shear deformation has been used. A perfect bond between the shell and the surrounding medium has been assumed. Results have been obtained for very hard (rocky), medium hard and soft soil surrounding the shell. The effects of shell orthotropy have been brought out by varying the non-dimensional orthotropic parameters over a long range. Under these conditions the shell response is studied in axisymmetric mode as well as in the flexural mode. It is observed that the shell response is significantly affected by change in orthotropic parameters and also due to change of response mode. It is observed that axial deformation is large in axisymmetric mode as compared to that in flexural mode.