• 제목/요약/키워드: Orthogonal pattern

검색결과 107건 처리시간 0.026초

Deep Learning-Based Modulation Detection for NOMA Systems

  • Xie, Wenwu;Xiao, Jian;Yang, Jinxia;Wang, Ji;Peng, Xin;Yu, Chao;Zhu, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권2호
    • /
    • pp.658-672
    • /
    • 2021
  • Since the signal with strong power need be demodulated first for successive interference cancellation (SIC) receiver in non-orthogonal multiple access (NOMA) systems, the base station (BS) need inform the near user terminal (UT), which has allocated higher power, of the far UT's modulation mode. To avoid unnecessary signaling overhead of control channel, a blind detection algorithm of NOMA signal modulation mode is designed in this paper. Taking the joint constellation density diagrams of NOMA signal as the detection features, the deep residual network is built for classification, so as to detect the modulation mode of NOMA signal. In view of the fact that the joint constellation diagrams are easily polluted by high intensity noise and lose their real distribution pattern, the wavelet denoising method is adopted to improve the quality of constellations. The simulation results represent that the proposed algorithm can achieve satisfactory detection accuracy in NOMA systems. In addition, the factors affecting the recognition performance are also verified and analyzed.

Analytical Approximation Algorithm for the Inverse of the Power of the Incomplete Gamma Function Based on Extreme Value Theory

  • Wu, Shanshan;Hu, Guobing;Yang, Li;Gu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권12호
    • /
    • pp.4567-4583
    • /
    • 2021
  • This study proposes an analytical approximation algorithm based on extreme value theory (EVT) for the inverse of the power of the incomplete Gamma function. First, the Gumbel function is used to approximate the power of the incomplete Gamma function, and the corresponding inverse problem is transformed into the inversion of an exponential function. Then, using the tail equivalence theorem, the normalized coefficient of the general Weibull distribution function is employed to replace the normalized coefficient of the random variable following a Gamma distribution, and the approximate closed form solution is obtained. The effects of equation parameters on the algorithm performance are evaluated through simulation analysis under various conditions, and the performance of this algorithm is compared to those of the Newton iterative algorithm and other existing approximate analytical algorithms. The proposed algorithm exhibits good approximation performance under appropriate parameter settings. Finally, the performance of this method is evaluated by calculating the thresholds of space-time block coding and space-frequency block coding pattern recognition in multiple-input and multiple-output orthogonal frequency division multiplexing. The analytical approximation method can be applied to other related situations involving the maximum statistics of independent and identically distributed random variables following Gamma distributions.

커먼레일 디젤인젝터의 분사성능 개선을 위한 내부유로형상 최적화에 관한 수치적 연구 (A Numerical Study on the Geometry Optimization of Internal Flow Passage in the Common-rail Diesel Injector for Improving Injection Performance)

  • 문성준;정수진;이상인;김태훈
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.91-99
    • /
    • 2014
  • The common-rail injectors are the most critical component of the CRDI diesel engines that dominantly affect engine performances through high pressure injection with exact control. Thus, from now on the advanced combustion technologies for common-rail diesel injection engine require high performance fuel injectors. Accordingly, the previous studies on the numerical and experimental analysis of the diesel injector have focused on a optimum geometry to induce proper injection rate. In this study, computational predictions of performance of the diesel injector have been performed to evaluate internal flow characteristics for various needle lift and the spray pattern at the nozzle exit. To our knowledge, three-dimensional computational fluid dynamics (CFD) model of the internal flow passage of an entire injector duct including injection and return routes has never been studied. In this study, major design parameters concerning internal routes in the injector are optimized by using a CFD analysis and Response Surface Method (RSM). The computational prediction of the internal flow characteristics of the common-rail diesel injector was carried out by using STAR-CCM+7.06 code. In this work, computations were carried out under the assumption that the internal flow passage is a steady-state condition at the maximum needle lift. The design parameters are optimized by using the L16 orthogonal array and polynomial regression, local-approximation characteristics of RSM. Meanwhile, the optimum values are confirmed to be valid in 95% confidence and 5% significance level through analysis of variance (ANOVA). In addition, optimal design and prototype design were confirmed by calculating the injection quantities, resulting in the improvement of the injection performance by more than 54%.

소형 고 격리도 듀얼 밴드 MIMO 안테나 (Compact Dual-Band MIMO Antenna with High Isolation Performance)

  • 염인수;정창원
    • 한국전자파학회논문지
    • /
    • 제21권8호
    • /
    • pp.865-871
    • /
    • 2010
  • 본 논문에서는 PMP에 적용 가능한 소형의 듀얼 밴드(IEEE 802.11b: 2.4~2.5 GHz, 11a: 5.15~5.825 GHz) 이중 대역 MIMO 안테나를 제안하였다. 제안된 안테나는 2 GHz 대역에서 동작하는 PIFA(평면형 역 F형 안테나)와 5 GHz 대역에서 동작하는 루프(loop) 안테나로 구성되었다. 두 포트의 안테나는 각각 PIFA와 루프로 구성되어져 있으며, 상호 간의 격리도(isolation)를 높이기 위하여 편파 방향과 최대 방사 방향이 서로 수직이 되도록 그라운드 가장자리에 직교(orthogonal) 구조로 배치하였다. 또한, 상관도(correlation) 저감과 더욱 높은 격리도를 얻기 위해, 2 GHz 동작 주파수 대역에서 두 포트의 PIFA가 $\lambda_g$/4 길이의 선(connecting line)으로 연결되어 있으며, 5 GHz 동작 주파수 대역에서는 그라운드 뒷면에 두 루프 안테나 사이를 연결하는 사다리꼴의 평면(connecting plane)을 이용하였다. 듀얼 밴드 MIMO 안테나는 WLAN 대역에서 충분한 이득을 가지며, PMP(Portable Media Player)에 적용 가능한 소형의 안테나로 설계되었다.

ESPAR 안테나에서 M×M MIMO 송신방식의 설계와 성능 평가 (Design and Performance Evaluation of M×M MIMO Transmission in ESPAR Antenna)

  • 복준영;이승환;유흥균
    • 한국통신학회논문지
    • /
    • 제38A권12호
    • /
    • pp.1061-1068
    • /
    • 2013
  • 본 논문에서는 ESPAR(Electronically Steerable Parasitic Array Radiator) 안테나를 이용한 $M{\times}M$ BS-MIMO(beam space multiple input multiple output) 시스템을 제안한다. 기존 MIMO 시스템은 전송 데이터 신호를 다수의 안테나에 맵핑시켜 전송하기 때문에 다수의 RF 체인이 필요한 문제점이 있다. 다수의 RF 체인은 하드웨어의 비용을 및 RF 회로의 전력 소모를 증가 시킨다. 또한, 휴대폰과 같이 공간적인 제약이 큰 모바일 장비에서 MIMO 시스템을 사용하기 어렵다. 이러한 문제를 해결하기 위해서 단일 RF 체인을 가지는 ESPAR 안테나를 사용하여 빔 공간에서 신호를 맵핑시키는 BS-MIMO 시스템이 제안되었다. 본 논문에서는 BS-MIMO 시스템 기법에 대해서 설명하고 이를 확장한 $M{\times}M$ BS-MIMO 전송 기법의 설계 및 성능을 분석한다. 컴퓨터 모의실험을 통한 성능 확인 결과 제안된 BS-MIMO 전송기법은 기존 MIMO 기법과 비교하여 거의 동일한 수신 BER 성능을 얻는다. 따라서 다수의 RF 체인을 가지는 기존 MIMO 시스템과 비교하여 BS-MIMO 시스템은 단일 RF 체인을 가지고 MIMO 전송이 가능하며, 이로 인해서 하드웨어 비용 및 RF 회로의 전력 소모를 획기적으로 줄일 것으로 예상된다.

위상차 현미경 영상 내 푸리에 묘사자를 이용한 암세포 형태별 분류 (Classification of Tumor cells in Phase-contrast Microscopy Image using Fourier Descriptor)

  • 강미선;이정엄;김혜련;김명희
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권4호
    • /
    • pp.169-176
    • /
    • 2012
  • Tumor cell morphology is closely related to its migratory behaviors. An active tumor cell has a highly irregular shape, whereas a spherical cell is inactive. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use 3D time-lapse phase-contrast microscopy to analyze single cell morphology because it enables to observe long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring. Therefore, we first corrected for non-uniform illumination artifacts and then we use intensity distribution information to detect cell boundary. In phase contrast microscopy image, cell is normally appeared as dark region surrounded by bright halo ring. Due to halo artifact is minimal around the cell body and has non-symmetric diffusion pattern, we calculate cross sectional plane which intersects center of each cell and orthogonal to first principal axis. Then, we extract dark cell region by analyzing intensity profile curve considering local bright peak as halo area. Finally, we calculated the Fourier descriptor that morphological characteristics of cell to classify tumor cells into active and inactive groups. We validated classification accuracy by comparing our findings with manually obtained results.

Hyperspectral Image Classification via Joint Sparse representation of Multi-layer Superpixles

  • Sima, Haifeng;Mi, Aizhong;Han, Xue;Du, Shouheng;Wang, Zhiheng;Wang, Jianfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권10호
    • /
    • pp.5015-5038
    • /
    • 2018
  • In this paper, a novel spectral-spatial joint sparse representation algorithm for hyperspectral image classification is proposed based on multi-layer superpixels in various scales. Superpixels of various scales can provide complete yet redundant correlated information of the class attribute for test pixels. Therefore, we design a joint sparse model for a test pixel by sampling similar pixels from its corresponding superpixels combinations. Firstly, multi-layer superpixels are extracted on the false color image of the HSI data by principal components analysis model. Secondly, a group of discriminative sampling pixels are exploited as reconstruction matrix of test pixel which can be jointly represented by the structured dictionary and recovered sparse coefficients. Thirdly, the orthogonal matching pursuit strategy is employed for estimating sparse vector for the test pixel. In each iteration, the approximation can be computed from the dictionary and corresponding sparse vector. Finally, the class label of test pixel can be directly determined with minimum reconstruction error between the reconstruction matrix and its approximation. The advantages of this algorithm lie in the development of complete neighborhood and homogeneous pixels to share a common sparsity pattern, and it is able to achieve more flexible joint sparse coding of spectral-spatial information. Experimental results on three real hyperspectral datasets show that the proposed joint sparse model can achieve better performance than a series of excellent sparse classification methods and superpixels-based classification methods.

A Change of Large-scale Circulations in the Indian Ocean and Asia Since 1976/77 and Its Impact on the Rising Surface Temperature in Siberia

  • Lim, Han-Cheol;Jhun, Jong-Ghap;Kwon, Won-Tae;Moon, Byung-Kwon
    • 한국지구과학회지
    • /
    • 제30권5호
    • /
    • pp.660-670
    • /
    • 2009
  • This study examines the changes of an interdecadal circulation over the Asian continent to find cause of the surface warming in Siberia from 1958 to 2004. According to our study, there is a coherency between a long-term change of sea surface temperature in the Indian Ocean and the rapid increase of air temperature in Siberia since 1976/1977. In this study, we suggest that mean wind field changes induced by the positive sea surface temperature anomalies of the Indian Ocean since 1976/1977 are caused of inter-decadal variations in a large-scale circulation over the Asian continent. It also indicates that the inter-decadal circulation over the Asian continent is accompanied with warm southerly winds near surface, which have significantly contributed to the increase of surface temperature in Siberia. These southerly winds have been one of the most dominant interdecadal variations over the Asian continent since 1976/1977. In addition, we investigated the long-term trend mode of 850 hPa geopotential height data over the Asian continent from the Empirical Orthogonal Function (EOF) analysis for 1958-2004. In result, we found that there was an anomalously high pressure pattern over the Asian continent, it is called 'the Asian High mode'. It is thus suggested that the Asian High mode is another response of interdecadal changes of large-scale circulations over the Asian continent.

청년기 여성의 의복설계를 위한 체형분류 (제1보) (Classification of the Somatotypes for the Construction of Young Women's Clothing (Part 1))

  • 권숙희;김혜경
    • 한국의류학회지
    • /
    • 제20권2호
    • /
    • pp.282-297
    • /
    • 1996
  • The effective construction for ready-made clothes is one of the central concerns of both consumers and manufactuers in today's apparel industry. In order to reduce the burden of stocks and increase clothing fitness, systematic information on typical body sizes and somatotypes is essential. The purpose of this study i-: to provide basic data on young women's somatotypes for form designers and pattern makers. The subjects of the survey were 310 women of 18 to 26 years old. The study collected 84 anthropometric data for each Person. The data was analyzed by using of the multivariate method. The factor analysis was utilized in regard to the 65 items obtained from anthropometric measurement respectively. The principal component analysis was applied to the data with orthogonal rotation after extraction. The factor scores used in the factor analysis became the basis of determining the value of each variable of the cluster analysis. The cluster analysis was applied for identifying typical somatotypes. Ward's minimum variance method was applied for the purpose of extracting distance metrix by the standardized Euclidean distance. The element forming each cluster can be subdivided into several sets by crosstabulation which is obtained by the fastclus of the SAS. This research has demonstrated 3 distinctive types of silhouette contour of the trunk. Incidentally it also identified 4 of the lower body from the waistline to thigh contour respectively. The discriminant analysis showed that the most significant discriminant factor of the trunk classification were side neck point -1 scapular -1 waistiline length and waist girth. In Korea, the average somatotype of female college students tends to be tall, slim and straight. Reviewing the relationship between the classifications of three parts of body, they are related to each other to some extent but their distribution are not constant. Therefore, in view of clothing construction, a proper separation of the body surface is a necessity.

  • PDF

Seismic behavior of steel reinforced concrete (SRC) joints with new-type section steel under cyclic loading

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1561-1580
    • /
    • 2015
  • No significant improvement has been observed on the seismic performance of the ordinary steel reinforced concrete (SRC) columns compared with the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type section steel were put forward on this background: a cross-shaped steel whose flanges are in contact with concrete cover by extending the geometry of webs, and a rotated cross-shaped steel whose webs coincide with diagonal line of the column's section. The advantages of new-type SRC columns have been proved theoretically and experimentally, while construction measures and seismic behavior remain unclear when the new-type columns are joined onto SRC beams. Seismic behavior of SRC joints with new-type section steel were experimentally investigated by testing 5 specimens subjected to low reversed cyclic loading, mainly including the failure patterns, hysteretic loops, skeleton curves, energy dissipation capacity, strength and stiffness degradation and ductility. Effects of steel shape, load angel and construction measures on seismic behavior of joints were also analyzed. The test results indicate that the new-type joints display shear failure pattern under seismic loading, and steel and concrete of core region could bear larger load and tend to be stable although the specimens are close to failure. The hysteretic curves of new-type joints are plumper whose equivalent viscous damping coefficients and ductility factors are over 0.38 and 3.2 respectively, and this illustrates the energy dissipation capacity and deformation ability of new-type SRC joints are better than that of ordinary ones with shear failure. Bearing capacity and ductility of new-type joints are superior when the diagonal cross-shaped steel is contained and beams are orthogonal to columns, and the two construction measures proposed have little effect on the seismic behavior of joints.