• Title/Summary/Keyword: Orthogonal image

Search Result 180, Processing Time 0.017 seconds

Double Random Phase Encryption using Orthogonal Encoding for Multiple-Image Transmission

  • Lee, In-Ho;Cho, Myungjin
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.201-206
    • /
    • 2014
  • In this paper we extend double random phase encryption (DRPE) using orthogonal encoding from single-image transmission to multiple-image transmission. The orthogonal encoding for multiple images employs a larger Hadamard matrix than that for a single image, which can improve security. We provide a scheme for DRPE with an orthogonal codec, and a method for orthogonal encoding/decoding for multiple-image transmission. Finally, simulation results verify that the DRPE using orthogonal encoding for multiple images is more secure than both the conventional DRPE and the DRPE using orthogonal encoding for a single image.

Double Random Phase Encryption Based Orthogonal Encoding Technique for Color Images

  • Lee, In-Ho;Cho, Myungjin
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.129-133
    • /
    • 2014
  • In this paper, we propose a simple Double random phase encryption (DRPE)-based orthogonal encoding technique for color image encryption. In the proposed orthogonal encoding technique, a color image is decomposed into red, green, and blue components before encryption, and the three components are independently encrypted with DRPE using the same key in order to decrease the complexity of encryption and decryption. Then, the encrypted data are encoded with a Hadamard matrix that has the orthogonal property. The purpose of the proposed orthogonal encoding technique is to improve the security of DRPE using the same key at the cost of a little complexity. The proposed orthogonal encoder consists of simple linear operations, so that it is easy to implement. We also provide the simulation results in order to show the effects of the proposed orthogonal encoding technique.

Image Compression Using Integer Lapped Orthogonal Transform (정수 직교 겹침 변환을 이용한 이미지 압축)

  • Lee, Sang-Ho;Jang, Jun-Ho;Kim, Young-Seop;Lim, Sang-Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.45-50
    • /
    • 2009
  • Recently, block-based transforms, like discrete cosine transform (DCT), have been widely used in image and video coding standards, but block-based transforms have a weak point with blocking effect. However, the integer lapped orthogonal transform (ILOT) is a tool for block-based coding with bases functions that overlap near blocks, so it has a strong point against blocking effect. Although it has slightly higher arithmetic complexity than the DCT, the coding gain is significantly higher with much less blocking artifacts. This paper introduces the integer lapped orthogonal transforms and discrete cosine transform. And we compare the performance of DCT with ILOT which is proposed a new efficient method for image coding applications.

  • PDF

A Study on fast LIFS Image Coding Using Adaptive Orthogonal Transformation (적응 직교변환을 이용한 LIFS 부호화의 고속화에 관한 연구)

  • 유현배;박경남;박지환
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.5
    • /
    • pp.658-667
    • /
    • 2004
  • For digital image compression, various fractal image coding schemes using the self-similarity of image have been studied extensively. This paper discusses the problem that occurs during the calculating process of adaptive orthogonal transformation and provides improvements of LIFS coding scheme using the transformation. This proposed scheme has a better performance than JPEG for a wide range of compression ratio. This research also proposes an image composition method consisting of all domains of the transformation. The results show that the arithmetic operation processes of the encoder and the decoder become much smaller even without the distortion of the coding performance.

  • PDF

Research on Camouflaged Encryption Scheme Based on Hadamard Matrix and Ghost Imaging Algorithm

  • Leihong, Zhang;Yang, Wang;Hualong, Ye;Runchu, Xu;Dawei, Zhang
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.686-698
    • /
    • 2021
  • A camouflaged encryption scheme based on Hadamard matrix and ghost imaging is proposed. In the process of the encryption, an orthogonal matrix is used as the projection pattern of ghost imaging to improve the definition of the reconstructed images. The ciphertext of the secret image is constrained to the camouflaged image. The key of the camouflaged image is obtained by the method of sparse decomposition by principal component orthogonal basis and the constrained ciphertext. The information of the secret image is hidden into the information of the camouflaged image which can improve the security of the system. In the decryption process, the authorized user needs to extract the key of the secret image according to the obtained random sequences. The real encrypted information can be obtained. Otherwise, the obtained image is the camouflaged image. In order to verify the feasibility, security and robustness of the encryption system, binary images and gray-scale images are selected for simulation and experiment. The results show that the proposed encryption system simplifies the calculation process, and also improves the definition of the reconstructed images and the security of the encryption system.

Optical Encryption System Using Two Linear Polarizer and Phase Mask (두 선형 편광기와 위상 마스크를 사용한 광 암호화 시스템)

  • 배효욱;신창목;서동환;박세준;조웅호;김수중
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.3
    • /
    • pp.10-18
    • /
    • 2003
  • In this paper, we propose an optical encryption system based on the encryption of information using the phase component of a wavefront and orthogonal polarization in a Mach-Zehnder interferometer. Since the incoherence of the two perpendicularly polarized lights removes interference component, the decrypted image is stable. In encryption process, the original image is converted into an image having random polarization state by the relative phase difference of horizontal polarization and vertical polarization, so we cannot obtain the original information from the random polarization distribution. To decrypt an Image, the random polarization distribution of encrypted image is divided into two orthogonal components, then key image must be placed on vertical path of Mach-Zehnder interferometer. The decrypted image is obtained In the form of intensity by use of an analyzer.

Ultrasound Imaging Based On Simultaneous Multiple Transmit Focusing Using Orthogonal Modified Golay Code (직교하는 변형된 골레이(Golay) 코드를 이용한 동시 다중 집속 기반의 초음파 영상 기법)

  • Kim, B.H.;Jeong, Y.K.;Song, T.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.187-190
    • /
    • 2001
  • A new ultrasound imaging technique based on simultaneous multiple transmit focusing using orthogonal modified Golay codes is presented. modified Golay codes are used to increase signal-to-noise-ratio(SNR) and maximize the transmit power efficiency(TPE). Conventional Golay codes consist of a pair of complementary codes with same length and can be compressed into a delta-like signal due to their complementary property. In the present work, two modified Golay codes focused at different depths are transmitted at the same time, which are mutually orthogonal. On receive, these orthogonal modified Golay codes are separately compressed into two short pulses and individually focused. These two focused beam are combined to form a frame of image with improved lateral resolution. Computer simulations are performed to verity the proposed method improves the lateral resolution of image compared with the conventional echo system.

  • PDF

Panoramic Navigation using Orthogonal Cross Cylinder Mapping and Image-Segmentation Based Environment Modeling (직각 교차 실린더 매핑과 영상 분할 기반 환경 모델링을 이용한 파노라마 네비게이션)

  • 류승택;조청운;윤경현
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.3_4
    • /
    • pp.138-148
    • /
    • 2003
  • Orthogonal Cross Cylinder mapping and segmentation based modeling methods have been implemented for constructing the image-based navigation system in this paper. The Orthogonal Cross Cylinder (OCC) is the object expressed by the intersection area that occurs when a cylinder is orthogonal with another. OCC mapping method eliminates the singularity effect caused in the environment maps and shows an almost even amount of area for the environment occupied by a single texel. A full-view image from a fixed point-of-view can be obtained with OCC mapping although it becomes difficult to express another image when the point-of-view has been changed. The OCC map is segmented according to the objects that form the environment and the depth value is set by the characteristics of the classified objects for the segmentation based modeling. This method can easily be implemented on an environment map and makes the environment modeling easier through extracting the depth value by the image segmentation. An environment navigation system with a full-view can be developed with these methods.

A Study on Applications of Wavelet Bases for Efficient Image Compression (효과적인 영상 압축을 위한 웨이브렛 기저들의 응용에 관한 연구)

  • Jee, Innho
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.39-45
    • /
    • 2017
  • Image compression is now essential for applications such as transmission and storage in data bases. For video and digital image applications the use of long tap filters, while not providing any significant coding gain, may increase the hardware complexity. We use a wavelet transform in order to obtain a set of bi-orthogonal sub-classes of images; First, the design of short kernel symmetric analysis is presented in 1-dimensional case. Second, the original image is decomposed at different scales using a subband filter banks. Third, this paper is presented a technique for obtaining 2-dimensional bi-orthogonal filters using McClellan transform. It is shown that suggested wavelet bases is well used on wavelet transform for image compression. From performance comparison of bi-orthogonal filter, we actually use filters close to ortho-normal filters on application of wavelet bases to image analysis.

Post-Processing for JPEG-Coded Image Deblocking via Sparse Representation and Adaptive Residual Threshold

  • Wang, Liping;Zhou, Xiao;Wang, Chengyou;Jiang, Baochen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1700-1721
    • /
    • 2017
  • The problem of blocking artifacts is very common in block-based image and video compression, especially at very low bit rates. In this paper, we propose a post-processing method for JPEG-coded image deblocking via sparse representation and adaptive residual threshold. This method includes three steps. First, we obtain the dictionary by online dictionary learning and the compressed images. The dictionary is then modified by the histogram of oriented gradient (HOG) feature descriptor and K-means cluster. Second, an adaptive residual threshold for orthogonal matching pursuit (OMP) is proposed and used for sparse coding by combining blind image blocking assessment. At last, to take advantage of human visual system (HVS), the edge regions of the obtained deblocked image can be further modified by the edge regions of the compressed image. The experimental results show that our proposed method can keep the image more texture and edge information while reducing the image blocking artifacts.