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In this paper we extend double random phase encryption (DRPE) using orthogonal encoding from 

single-image transmission to multiple-image transmission. The orthogonal encoding for multiple images 

employs a larger Hadamard matrix than that for a single image, which can improve security. We provide 

a scheme for DRPE with an orthogonal codec, and a method for orthogonal encoding/decoding for 

multiple-image transmission. Finally, simulation results verify that the DRPE using orthogonal encoding 
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encoding for a single image.
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I. INTRODUCTION

A significant issue in transmitting private or confidential 

information is information security. Encryption techniques 

for secure data transmission have been well developed [1-26], 

and lots of research has focused on optical encryption [3-26]. 

One widely used optical technique is double random phase 

encryption (DRPE) [3]. It provides high encryption speed, 

but requires updating of the key phase masks [4]. To 

improve the security of DRPE, fractional Fourier transform 

has been adopted in DRPE systems [25], but it requires 

much more information in the keys for encryption and 

decryption. An increase in the key information can make the 

DRPE systems more complicated, so DRPE using orthogonal 

encoding has been proposed for single-image transmission 

[26]. The orthogonal encoding technique for single-image 

transmission employs only simple, linear operations based 

on the Hadamard matrix of order 2 with the orthogonality 

property [27]. Thus, the use of orthogonal encoding can 

enhance the security of DRPE at the cost of a little 

complexity.

In this paper we extend DRPE using orthogonal en-

coding from single-image to multiple-image transmission. 

The orthogonal encoding for multiple images uses a larger 

Hadamard matrix than that for a single image, and hence 

is more secure. We provide a scheme for DRPE with an 

orthogonal codec for multiple-image transmission. Further-

more, we show simulation results verifying that the multiple 

images encrypted by DRPE using orthogonal encoding are 

not correctly decrypted even when the key information used 

in DRPE is known.

The paper is organized as follows. Section II presents 

the basic concept of DRPE. Then, DRPE using orthogonal 

encoding for multiple-image transmission is described in 

Section III. To verify this optical encryption method, simu-

lation results produced by DRPE using orthogonal encoding 

are provided in Section IV. Finally, we conclude with a 

summary.

II. DOUBLE RANDOM PHASE 

ENCRYPTION TECHNIQUE

DRPE, an optical encryption technique, can provide high 

encryption and decryption speed. In addition, it can be 

implemented simply. It uses two random phase noises (i.e., 

random phase masks) for the encryption process. Then, noise 

like encrypted data can be obtained. For decryption, the 
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FIG. 1. Schematic setup of (a) encryption and (b) decryption 

for DRPE.

(a)

(b)

FIG. 2. Scheme for DRPE using orthogonal encoding: (a) 

encryption and (b) decryption.

key random phase mask is convolved with the encrypted 

data. To understand the DRPE concept, we consider only 

one-dimensional data. Let us assume that the primary data 

is s(x) and the two random phase noise signals for encryption, 

ns(x) in the spatial domain and nf (μ) in the spatial frequency 
domain, are uniformly distributed over [0, 1]. Figure 1(a) 

illustrates an experimental optical setup for DRPE. Two 

imaging lenses with focal length f are used for the Fourier 

transform and inverse Fourier transform, respectively. For 

encryption, first the original data is multiplied by random 

noise, exp[i2πns(x)], in the spatial domain. Through the first 

imaging lens ℑ{s(x)exp[i2πns(x)]} can be obtained, where 
ℑ indicates the Fourier transform. Then this is multiplied 
by random noise, exp[i2πnf (μ)] (the Fourier transform of 

h(x)), in the spatial frequency domain. After passing through 

the second imaging lens, the data encrypted (as a complex- 

valued function) by DRPE, se(x), can be generated as the 

following [11]:

( )es x =

( ) ( ){ } ( ){ }1
exp 2 exp 2s fs x i n x i nπ π μ− ⎡ ⎤⎡ ⎤ℑ ℑ ⎣ ⎦⎣ ⎦

(1)

where ℑ-1 indicates the inverse Fourier transform. This 

encrypted data can be separated into amplitude and phase, 

i.e. se(x)＝|se(x)|exp[iφe(x)] because of the characteristics of 
a complex-valued function. 

For decryption, the complex conjugate of the key infor-

mation (i.e. the Fourier transform of h(x)) is multiplied by 

the encrypted data as shown in Fig. 1(b). Therefore, the 

decrypted data can be obtained from the following equation 

[11]:

[ ] { }1( ) ( ) exp 2 ( )e fs x s x i nπ μ− ⎡ ⎤= ℑ ℑ −⎣ ⎦
% (2)

III. DOUBLE RANDOM PHASE ENCRYPTION 

USING ORTHOGONAL ENCODING

3.1. Procedure for DRPE using Orthogonal Encoding

In this paper we assume that K primary images are 

transmitted. Figures 2(a) and 2(b) depict the schemes for 

DRPE using orthogonal encoding for encryption and de-

cryption, respectively. As shown in Fig. 2(a), the primary 

images s1(x), s2(x), …, sK(x) are sequentially encrypted by 

DRPE with the same key information (i.e. the same phase 

masks). Then the encrypted data se,1(x), se,2(x), …, se,K(x) 

are obtained from the K primary images. Note that the 

encrypted data are complex-valued functions. By a serial- 

to-parallel converter, the encrypted data are converted from 

serial format to parallel format. Then each encrypted datum 

is separated into real and imaginary parts. The 2K values 

rre,1(x), rim,1(x), … , rre,K(x), rim,K(x) are encoded together with 

the orthogonal encoding technique, which will be introduced 

in Section 3.2. The reason why the real and imaginary parts 

are encoded is that these parts are independent from each 

other. Finally, the complex encoded data q1(x), q2(x), … , 

qM/2(x) are produced from the encoded real values c1(x), 

c2(x), … , cM(x) and successively transmitted after the 

parallel-to-serial converter, where 2
log 2

2
K

M ⎡ ⎤⎢ ⎥=  and ⎡⎤ in-
dicates the ceiling operation.

As shown in Fig. 2(b), to correctly decrypt the orthogo-
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(a) (b) (c) (d)

FIG. 3. The four primary images.

(a) (b) (c) (d)

FIG. 4. Simulation results for encryption by DRPE using 

orthogonal encoding for two images: (a) the first and (b) the 

second encrypted images, and (c) the first and (d) the second 

encoded images.

nally encoded data, first the encoded data are converted 

from serial format to parallel format and decomposed into 

real and imaginary components. Then the real encoded 

data are decoded with the orthogonal matrix used in the 

encoder. From the real decoded data ,1
( )

re
r x% , ,1

( )
im
r x% , … , 

,

( )
re K
r x% , ,

( )
im K
r x%  the complex decoded data ,1

( )
e
s x% , ,2

( )
e
s x% , 

… , 
,

( )
e K
s x%  are found, and then sequentially decrypted with 

the DRPE decryption technique after the parallel-to-serial 

converter. Finally, the K decrypted data 1
( )s x% , 2

( )s x% , … , 

( )
K
s x%  are obtained.

3.2. Orthogonal Encoding and Decoding Technique

For orthogonal encoding and decoding of multiple images, 

we use the Hadamard matrix of order 2n, denoted by 

2
n

L×
H , with the following orthogonality property [27]:

2 2
2

n n

T n

L LL L ×× × =H H I (3)

where n and L are positive integers, 2n ≥L, IL×L represents 

the L×L identity matrix, and HT is the transpose of H. The 

square Hadamard matrix of order 2n is generated as follows:

1 1 1 1

1 1 1 1

2 2 2 2

2 2

2 2 2 2

n n n n

n n

n n n n

− − − −

− − − −

× ×
×

× ×

⎡ ⎤= ⎢ ⎥−⎣ ⎦

H H
H

H H
(4)

where H2＝[1 1; 1 -1]. On the other hand, when 2n-1＜L

＜2n, the non-square Hadamard matrix is obtained by 

choosing any L columns of the square Hadamard matrix of 

order 2n, 2 2
n n×

H .

By using the Hadamard matrix in the orthogonal encoder, 

the real and imaginary components of the encrypted data 

for K images are encoded as follows:

,11

,12

2

1 ,

,

( )( )
( )( )

1

( ) ( )

( ) ( )

re

im

M K

M re K

M im K

r xc x

r xc x

M
c x r x

c x r x

×

−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

HM M (5)

where 2
log 2

2
K

M ⎡ ⎤⎢ ⎥= , cm(x) is the mth encoded datum, and 

rre,k(x) and rim,k(x) are the real and imaginary parts of the 

encrypted data for the kth image, respectively. 1/M is a 

normalization factor. 

In the orthogonal decoder, the real and imaginary com-

ponents of the encoded data c1(x), c2(x), … , cM(x) are 

decoded by using the Hadamard matrix of the encoder as 

follows: 

,1 1

,1 2

2

, 1

,

( ) ( )
( ) ( )

( ) ( )

( )( )

re

im

T

M K

re K M

Mim K

r x c x

r x c x

r x c x

c xr x

×

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

H

%

%

M M

%

%

(6)

where ,

( )
re k
r x%  and ,

( )
im k
r x%  are the decoded data for the kth 

image. By inserting Eq. (5) into Eq. (6), we obtain 
,

( )
re k
r x%  

,

( )
re k
r x= and 

, ,

( ) ( )
im k im k
r x r x=% .

The orthogonal encoder and decoder consist of only 

simple linear operations, as described in Eqs. (4)-(6). Hence, 

the addition of the orthogonal encoder and decoder to the 

DRPE system does not require any high cost or effort.

IV. SIMULATION RESULTS

For performance evaluation of DRPE using orthogonal 

encoding, we use four primary images with 500 (H)×500 

(V) pixels as shown in Fig. 3. We consider transmissions 

of two, three, and four images. For two-, three-, and four- 

image transmissions the primary images in Figs. 3(a) and 

3(b), Figs. 3(a)-3(c), and Figs. 3(a)-3(d) are used re-

spectively, and the following Hadamard matrices are used 

respectively.

4 4

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

×

⎡ ⎤
⎢ ⎥− −= ⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

H (7)

8 6

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

×

⎡ ⎤
⎢ ⎥− − −
⎢ ⎥− −
⎢ ⎥− − −⎢ ⎥= − −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥− − − −
⎢ ⎥− − −⎣ ⎦

H (8)
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(a) (b) (c)

(d) (e) (f) (g)

FIG. 5. Simulation results for encryption by DRPE using 

orthogonal encoding for three images: (a) the first, (b) the 

second, and (c) the third encrypted images, and (d) the first, 

(e) the second, (f) the third, and (g) the fourth encoded 

images.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 6. Simulation results for encryption by DRPE using 

orthogonal encoding for four images: (a) the first, (b) the 

second, (c) the third, and (d) the fourth encrypted images, and 

(e) the first, (f) the second, (g) the third, and (h) the fourth 

encoded images.

(a) (b)

(c) (d)

FIG. 7. Simulation results for decryption by DRPE using 

orthogonal encoding for two images: (a) the first and (b) the 

second decrypted images without decoding, and (c) the first 

and (d) the second decrypted images with decoding.

(a) (b) (c)

(d) (e) (f)

FIG. 8. Simulation results for decryption by DRPE using 

orthogonal encoding for three images: (a) the first, (b) the 

second, and (c) the third decrypted images without decoding, 

and (d) the first, (e) the second, and (f) the third decrypted 

images with decoding.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 9. Simulation results for decryption by DRPE using 

orthogonal encoding for four images: (a) the first, (b) the 

second, (c) the third, and (d) the fourth decrypted images 

without decoding, and (e) the first, (f) the second, (g) the third, 

and (h) the fourth decrypted images with decoding.

8 8

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

×

⎡ ⎤
⎢ ⎥− − − −
⎢ ⎥− − − −
⎢ ⎥− − − −⎢ ⎥= − − − −⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥− − − −
⎢ ⎥− − − −⎣ ⎦

H (9)

Figures 4-6 show the encrypted and encoded images for 

two-, three-, and four-image transmissions respectively. These 

figures indicate that the images encrypted by DRPE and 

encoded by orthogonal encoding are perfectly encrypted, 

and thus look like noise. It is noted that for three-image 

transmission, four encoded images are generated because 

the order of Hadamard matrix is eight. Figures 7-9 show 
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TABLE 1. MSE results of DRPE using orthogonal encoding 

when incorrect decoding is used

Cases

MSE for 

two-image 

transmission

MSE for 

three-image 

transmission

MSE for 

four-image 

transmission

Primary image1 and 

the 1st decrypted 

image

1001.4 1660.2 1806.8

Primary image2 and 

the 2nd decrypted 

image

3940.4 4060.7 4211.8

Primary image3 and 

the 3rd decrypted 

image

- 2277.2 2517.3

Primary image4 and 

the 4th decrypted 

image

- - 2517.3

(a) (b) (c)

(d) (e) (g)

(g) (h) (i)

FIG. 10. Simulation results for decryption by DRPE using 

orthogonal encoding when decoding for the single-image 

transmission is used: (a) the first and (b) the second decrypted 

images for two-image transmission, (c) the first, (d) the 

second, and (e) the third decrypted images for three-image 

transmission, and (f) the first, (g) the second, (h) the third, and 

(i) the fourth decrypted images for four-image transmission.

the decrypted images, with and without decoding, for two-, 

three-, and four-image transmissions respectively, when the 

key information of DRPE is perfectly known for decryption. 

In the case of no decoding, the complex encoded data are 

not decoded with the orthogonal decoder, but directly 

decrypted. Thus, 
,

( ) ( )
e k k
s x q x=%  for k＝1,2,…, K. From these 

figures, it is seen that the decrypted images without decoding 

resemble the encrypted images, even though perfect key 

information was applied for decryption. On the other hand, 

when the decryption is done with orthogonal decoding and 

perfect key information, the decrypted images in Fig. 3 

match the primary images perfectly.

Figures 10(a)-10(i) show the decrypted images for two-, 

three-, and four-image transmissions respectively, when 

perfect key information of DRPE is used for decryption but 

the wrong decoding is employed. For the wrong decoding 

method we use the Hadamard matrix of order 2 that was 

adopted for decryption of the single-image transmission [26]. 

For encoding of two-, three-, and four-image transmissions, 

we use the Hadamard matrices of order 4, 8, and 8, res-

pectively. Thus the Hadamard matrices used for encoding 

and decoding do not match. As seen in these figures, the 

decrypted images somewhat include the primary images, 

but overlapped, and image recognition becomes worse as 

the number of transmitted images increases, i.e. the size of 

the Hadamard matrix increases.

To quantify the difference between the primary images 

in Figs. 3(a)-3(d) and the decrypted images with incorrect 

decoding in Figs. 10(a)-10(i) respectively, the mean square 

error (MSE) is evaluated. MSE between the kth primary 

and decrypted images is calculated as follows: 

2

1

1
( ) ( )

X

k k k

x

MSE s x s x
X =

= −∑ % (10)

where X＝500×500, and sk(x) and ( )
k
s x%  denote the kth 

primary and decrypted data respectively, as shown in Fig. 

2. Assuming that the image pixel value’s integer range is 

from 0 to 255, the MSE results are obtained as shown in 

Table 1. From the MSE results it is observed that the MSE 

increases with the number of transmitted images. Therefore, 

we can expect a significant improvement in information 

security by encoding many more images together.

V. CONCLUSIONS

We present a DRPE technique using orthogonal encoding 

for multiple-image transmission. Particularly we provide a 

scheme for DRPE using orthogonal encoding for encryption 

and decryption as well as the method for orthogonal en-

coding and decoding with the Hadamard matrix. From 

simulation results we verify that DRPE using orthogonal 

encoding for multiple-image transmission is more powerful 

than that for the single-image transmission, in terms of 

security. Furthermore, since the orthogonal encoder and 

decoder consist of only simple linear operations, the DRPE 

system using orthogonal encoding for multiple-image trans-

mission can be implemented with low cost and effort.
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