• Title/Summary/Keyword: Orthogonal Sequence

Search Result 184, Processing Time 0.019 seconds

Performance of Multi-rate Optical Wireless PPM-CDMA System over an Indoor Non-directed Diffuse Channel (실내 비방향성 분산채널에서 다중전송률 광무선 PPM-CDMA 시스템의 성능 분석)

  • 황성수;이재홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7A
    • /
    • pp.943-950
    • /
    • 2000
  • In this paper, an asynchronous multi-rate optical wireless pulse position modulation-code division multiple access (PPM-CDMA) is proposed for an indoor non-directed diffuse channel. As a signature sequence for CDMA, an optical orthogonal code (OOC) is used and an interference cancellation scheme is applied to improve the bit error rate. It is known that the optical PPM-CDMA has advantages due to its power efficiency. Moreover, it provides multi-rate services by varying the modulation level with fixed pulse duration. In the proposed multi-rate PPM-CDMA system with fixed pulse duration, chip rate and sampling time do not change for each transmission rate and this simplifies overall system structure.

  • PDF

Study of Metabolic Profiling Changes in Colorectal Cancer Tissues Using 1D 1H HR-MAS NMR Spectroscopy

  • Kim, Siwon;Lee, Sangmi;Maeng, Young Hee;Chang, Weon Young;Hyun, Jin Won;Kim, Suhkmann
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1467-1472
    • /
    • 2013
  • Metabolomics is a field that studies systematic dynamics and secretion of metabolites from cells to understand biological pathways based on metabolite changes. The metabolic profiling of intact human colorectal tissues was performed using high-resolution magic angle spinning (HR-MAS) NMR spectroscopy, which was unnecessary to extract metabolites from tissues. We used two different groups of samples, which were defined as normal and cancer, from 9 patients with colorectal cancer and investigated the samples in NMR experiments with a water suppression pulse sequence. We applied target profiling and multivariative statistical analysis to the analyzed 1D NMR spectra to identify the metabolites and discriminate between normal and cancer tissues. Cancer tissue showed higher levels of arginine, betaine, glutamate, lysine, taurine and lower levels of glutamine, hypoxanthine, isoleucine, lactate, methionine, pyruvate, tyrosine relative to normal tissue. In the OPLS-DA (orthogonal partial least square discriminant analysis), the score plot showed good separation between the normal and cancer groups. These results suggest that metabolic profiling of colorectal cancer could provide new biomarkers.

A Parallel Combinatory OFDM System with Weighted Phase Subcarriers

  • Zheng, Hui;Shrestha, Robin;Hwang, Jae-Ho;Kim, Jae-Mong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.322-340
    • /
    • 2012
  • Orthogonal Frequency Division Multiplexing (OFDM) is usually regarded as a spectral efficient multicarrier modulation technique, yet it suffers from a high peak-to-average power ratio (PAPR) problem. Among all the existing PAPR reduction techniques in OFDM systems, side information based PAPR reduction techniques such as partial transmit sequence (PTS) and selective mapping (SLM) schemes, have attracted the most attention. However, the transmission of side information results in somewhat spectral loss and this does not significantly improve the bit error rate (BER) performance. Parallel combinatory (PC) OFDM yields higher spectral efficiency (SE) and better BER performance on Gaussian channels,while is a little but not obvious PAPR improvement over the ordinary OFDM system. This investigation aimed to design a 'perfect' OFDM system. We introduce the side information to rotate the subcarrier phases of our novel PC-OFDM system structure, and call this new system the SIPC(Side information based Parallel Combinatory)-OFDM system. The proposed system achieves better PAPR and SE performance. In addition, considering the tradeoff of system parameters, the proposed system also has the properties of a higher BER.

A Study on the Effective Channel Estimation Method in OFDM Based WLAN (OFDM 기반 WLAN 수신기에서 효율적인 채널추정 기법에 관한 연구)

  • Jeon Hyoung-Goo;Choi Won-Chul;Lee Hyun;Oh Hyun-Seo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.1 s.6
    • /
    • pp.57-62
    • /
    • 2005
  • In this paper, we propose a channel estimation method by impulse signal train in OFDM. In order to estimate the channel response, 4 impulse signals are generated and transmitted during one OFDM (Orthogonal Frequency Division Multiplexing) symbol. The intervals between the impulse signals are all equal in time domain. At the receiver, the impulse response signals are summed and averaged. And then, the averaged impulse response signal is zero padded and fast Fourier transformed to obtain the channel estimation. The BER performance of the proposed method is compared with those of conventional estimation method using the long training sequence in fast fading environments. The simulation results show that the proposed method improves by 3 dB in terms of Eb/No, compared with the conventional method.

  • PDF

Grant-Free Random Access in Multicell Massive MIMO Systems with Mixed-Type Devices: Backoff Mechanism Optimizations under Delay Constraints

  • Yingying, Fang;Qi, Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.185-201
    • /
    • 2023
  • Grant-free random access (GFRA) can reduce the access delay and signaling cost, and satisfy the short transmission packet and strict delay constraints requirement in internet of things (IoT). IoT is a major trend in the future, which is characterized by the variety of applications and devices. However, most existing studies on GFRA only consider a single type of device and omit the effect of access delay. In this paper, we study GFRA in multicell massive multipleinput multiple-output (MIMO) systems where different types of devices with various configurations and requirements co-exist. By introducing the backoff mechanism, each device is randomly activated according to the backoff parameter, and active devices randomly select an orthogonal pilot sequence from a predefined pilot pool. An analytical approximation of the average spectral efficiency for each type of device is derived. Based on it, we obtain the optimal backoff parameter for each type of devices under their delay constraints. It is found that the optimal backoff parameters are closely related to the device number and delay constraint. In general, devices that have larger quantity should have more backoff time before they are allowed to access. However, as the delay constraint become stricter, the required backoff time reduces gradually, and the device with larger quantity may have less backoff time than that with smaller quantity when its delay constraint is extremely strict. When the pilot length is short, the effect of delay constraints mentioned above works more obviously.

OFDM Communication System Using the Additive Control Tone for PAPR Reduction (PAPR 저감을 위하여 부가 Control 톤을 이용하는 OFDM 통신 시스템)

  • Kim Jin-Kwan;Lee Ill-Jin;Ryu Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.12 s.103
    • /
    • pp.1229-1238
    • /
    • 2005
  • OFDM(Orthogonal Frequency Division Multiplexing) communications system is very attractive for the high data rate wireless transmission. However, it may be distorted in the nonlinear HPA(High Power Amplifier) since OFDM signal has hish PAPR(Peak-to-Average Power Ratio). In this paper, a new method using control tone is studied for reducing the PAPR and we call it PCT(PAPR Control Tone) method. This proposed PCT method is to assign control tones for PAPR reduction at the predefined sub-carriers. After IFFT(Inverse Fast Fourier Transform) and PAPR calculation, the OFDM data signal of the lowest PAPR is selected to transmit. Unlike the conventional method, it can cut down the computational complexity because it does not require the transmission and demodulation process of side information about the phase rotation. Furthermore, if this method is made up in parallel configuration, it can solve the time delay problem so that it can be processed in real time processing. This proposed method is compared with the conventional selected mapping(SLM) technique. We find out the PAPR reduction performance and BER when the number of control tone is 6 and nonlinear HPA is considered.

Multirate Multicarrier DS/CDMA with 2-Domain Spreading (2차원 확산을 사용하는 다중전송률 MC-DS/CDMA 시스템)

  • Kim, Nam-Sun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.27-35
    • /
    • 2011
  • Multicarrier-Direct Sequence/Code Division Multiple Access(MC-DS/ CDMA) which is a combination of Orthogonal Frequency Division Multiplexing(OFDM) and DS/CDMA has been of significant interest as a means to take such advantages as bandwidth efficiency, high bit rate and robustness against multipath fading. In this paper we study a reduced-complexity multiuser detection aided multirate MC-DS/CDMA with time(T)-domain and frequency(F)-domain spreading. The one- dimensional orthogonal variable spreading factor(1D OVSF) code extracted from 2D OVSF code are used as a spreading code in T/F-domain. The proposed system will use code grouping interference cancellation(CGIC) receiver to reduce Multiuser Interference(MUI). The CGIC receiver uses code grouping by the correlation properties of 1D OVSF code and dose not requires the code information and activity of other user. The multiuser detector with CGIC receiver will be analyzed in Time- and Frequency-domain separately(jointly). The system performance is analytically derived in Additive White Gaussian Noise(AWGN) channel and we also compare the system performance between proposed system and T/F spreaded single(multi) rate multiuser MC-DS/CDMA system. In the computer simulation results, the proposed receiver of demonstrated huge performance improvement over conventional matched filter receiver.

Frequency Synchronization Algorithm for Improving Performance of OFDMA System in 3GPP LTE Downlink (3GPP LTE 하향링크 OFDMA 시스템의 수신 성능 향상을 위한 주파수 동기 알고리즘)

  • Lee, Dae-Hong;Im, Se-Bin;Roh, Hee-Jin;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.120-130
    • /
    • 2009
  • In this paper, we propose a receiver structure for frequency synchronization in OFDMA (Orthogonal Frequency Division Multiple Access) system which is considered as 3GPP LTE(Long Term Evolution) downlink. In general, OFDMA frequency synchronization consists of two parts: coarse synchronization and fine synchronization. We consider P-SCH (Primary-Synchronization Channel) and CP (Cyclic Prefix) of OFDMA symbol for coarse synchronization and fine synchronization, respectively. The P-SCH signal has two remarkable disadvantages that it does not have sufficiently many sub-carriers and its differential correlation characteristic is not good due to ZC (Zadoff Chu) sequence-specific property. Hence, conventional frequency synchronization algorithms cannot obtain satisfactory performance gain. In this paper, we propose a modified differential correlation algorithm to improve performance of the coarse frequency synchronization. Also, we introduce an effective PLL (Phase Locked Loop) structure to guarantee stable performance of the fine frequency synchronization. Simulation results verify that the proposed algorithm has superior performance to the conventional algorithms and the 2nd-order PLL is effective to track the fine frequency offset even in high mobility.

Realization of an IEEE 802.11g VoWLAN Terminal with Support of Adaptable Power Save and QoS During a Call (통화 중 적응적 Power Save와 QoS 지원이 가능한 IEEE B02.11g VoWLAN 단말기 구현)

  • Kwon, Sung-Su;Lee, Jong-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10A
    • /
    • pp.1003-1013
    • /
    • 2006
  • There is a serious problem in an 802.11g VoWLAN (Voice over Wireless LAN) terminal that talk time is less than 30% compared with an 802.11b terminal. It is almost impossible to achieve talk time level of the 802.11b MAC transmission method because IEEE 802.11g uses OFDM modulation, which is a kind of multi-carrier method and OFDM transmission speed is 54 Mbps faster than normal modulation. In this paper, a new concept of a Holdover time as a power saving method during a call with 802.11g terminal is suggested for the first time. Increase in the number of engaged terminals as a result of holdover time causes to QoS problem because of the increase in the number of back-off and then contention window. In this paper, to solve the QoS problem, a new approach is suggested such that when in down lint the sequence number of 802.11 G.711 is analyzed in the MAC of the terminal and then the Hold over time depending on loss rate is changed. Also, consumption of an electric current of 802.11b/g and MAC parameter's performance due to busy traffic caused by increase in the number of terminal are analyzed and then real data using VQT and Airopeek are analyzed.

Improvement of Power Efficiency of HPA by the PAPR Reduction and Predistorter in MIMO-OFDM (MIMO-OFDM에서 PAPR 저감 및 사전 왜곡기에 의한 HPA의 전력 효율 개선)

  • Trang Ngo Thi Thu;Kim Nam;Han Tae-Young
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.1
    • /
    • pp.201-208
    • /
    • 2005
  • Tn this paper, we evaluate the peak-to-average power ratio (PAPR) performance in a space-time block code (STBC) multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) system using selected mapping (SLM) and partial transmit sequences (PTS) approaches. SLM and PTS methods are used to decrease the nonlinear distortion and to improve the power efficiency of the nonlinear high power amplifier(HPA) in the MIMO-OFDM system. In simulation result, when compared with the existing MIMO-OFDM system using QPSK, the PTS method reduces the PAPR about 5dB while the SLM method can reduce about 3.5 dB. Also, we find the BER performance of the MIMO-OFDM system with and without the predistorter in front of the HPA. When the predistorter is used, the input back-off (IBO) of 4 dB is required in the PTS method, and IBO of 6 dB in the SLM method to closely conform to the linear amplifier. If the method of improving the PAPR is not used, the value of IBO of 8 dB is required.

  • PDF