• Title/Summary/Keyword: Orthodontic adhesive

Search Result 79, Processing Time 0.024 seconds

Effects of different primers on indirect orthodontic bonding: Shear bond strength, color change, and enamel roughness

  • Tavares, Mirella Lemos Queiroz;Elias, Carlos Nelson;Nojima, Lincoln Issamu
    • The korean journal of orthodontics
    • /
    • v.48 no.4
    • /
    • pp.245-252
    • /
    • 2018
  • Objective: We aimed to perform in-vitro evaluation to compare 1) shear bond strength (SBS), adhesive remnant index (ARI), and color change between self-etched and acid-etched primers; 2) the SBS, ARI and color change between direct and indirect bonding; and 3) the enamel roughness (ER) between 12-blade bur and aluminum oxide polisher debonding methods. Methods: Seventy bovine incisors were distributed in seven groups: control (no bonding), direct (DTBX), and 5 indirect bonding (ITBX, IZ350, ISONDHI, ISEP, and ITBXp). Transbond XT Primer was used in the DTBX, ITBX, and ITBXp groups, flow resin Z350 in the IZ350 group, Sondhi in the ISONDHI group, and SEP primer in the ISEP group. SBS, ARI, and ER were evaluated. The adhesive remnant was removed using a low-speed tungsten bur in all groups except the ITBXp, in which an aluminum oxide polisher was used. After coffee staining, color evaluations were performed using a spectrophotometer immediately after staining and prior to bonding. Results: ISONDHI and ISEP showed significantly lower SBS (p < 0.01). DTBX had a greater number of teeth with all the adhesive on the enamel (70%), compared with the indirect bonding groups (0-30%). The ER in the ITBX and ITBXp groups was found to be greater because of both clean-up techniques used. Conclusions: Direct and indirect bonding have similar results and all the primers used show satisfactory adhesion strength. Use of burs and polishers increases the ER, but polishers ensure greater integrity of the initial roughness. Resin tags do not change the color of the teeth.

Resin bonding of metal brackets to glazed zirconia with a porcelain primer

  • Lee, Jung-Hwan;Lee, Milim;Kim, Kyoung-Nam;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.45 no.6
    • /
    • pp.299-307
    • /
    • 2015
  • Objective: The aims of this study were to compare the shear bond strength between orthodontic metal brackets and glazed zirconia using different types of primer before applying resin cement and to determine which primer was more effective. Methods: Zirconia blocks were milled and embedded in acrylic resin and randomly assigned to one of four groups: nonglazed zirconia with sandblasting and zirconia primer (NZ); glazed zirconia with sandblasting, etching, and zirconia primer (GZ); glazed zirconia with sandblasting, etching, and porcelain primer (GP); and glazed zirconia with sandblasting, etching, zirconia primer, and porcelain primer (GZP). A stainless steel metal bracket was bonded to each target surface with resin cement, and all specimens underwent thermal cycling. The shear bond strength of the specimens was measured by a universal testing machine. A scanning electron microscope, three-dimensional optical surface-profiler, and stereoscopic microscope were used to image the zirconia surfaces. The data were analyzed with one-way analyses of variance and the Fisher exact test. Results: Group GZ showed significantly lower shear bond strength than did the other groups. No statistically significant differences were found among groups NZ, GP, and GZP. All specimens in group GZ showed adhesive failure between the zirconia and resin cement. In groups NZ and GP, bonding failed at the interface between the resin cement and bracket base or showed complex adhesive and cohesive failure. Conclusions: Porcelain primer is the more appropriate choice for bonding a metal bracket to the surface of a full-contour glazed zirconia crown with resin cement.

The effect of contamination on bonding of orthodontic brackets with a self-etching prirneriadhesive (Self-etching primer/adhesive를 사용한 교정용 브라켓의 접착시 오염이 전단결합강도에 미치는 영향)

  • Kim, Yu-Shin;Lee, Hyung-Soon;Lee, Hyun-Jung;Jeon, Young-Mi;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.34 no.5 s.106
    • /
    • pp.439-447
    • /
    • 2004
  • The purpose of this study was to investigate the influence of water, saliva and blood contamination on the bonding strength of metal brackets with a self-etching primer/adhesive to enamel. Ninety-six extracted human teeth were divided into four groups. The brackets were bonded to enamel with a self- etching primer (3M/Unitek Dental Products. Monorovia California) according to one of four protocols. The teeth were bonded in a dry condition (group D) or in contamination with distilled water (group W), artificial saliva (group S). or fresh human blood (group B) Shear bond strengths were tested using an Instron Universal testing machine. After debonding. bracket and tooth surfaces were examined with a stereomicroscope. In each group, four samples were selected and examined with a Scanning electron microscope of the prepared enamel surface and resin-enamel interlace. The results obtained were summarized as follows: Shear bond Strength if group D $(15.22{\pm}2.86MPa)$ and W $(15.20{\pm}3.85 MPa)$ Were higher than in group B$(12.56{\pm}2.94MPa)$ (p<0.05). There were no statistical differences in the shear bond strengths between groups D. W and S (p>0.05). There was a tendency to have less residual adhesive remaining on the enamel surfaces of group B than group D. The SEW morphology of group D and W showed a more roughened etching pattern than group S and B. Water or saliva contamination on bending of orthodontic brackets with Transbond plus self etching primer had almost no influence on bond strength In this study, the blood contaminated group showed the lowest bond strength, but it was above the clinically acceptable bond strength (5.9-7.8 MPa, Reynold, 1975). The results of this study suggest that acceptable clinical bond strengths can be obtained in wet conditions when self-etching adhesives are used.

Effect of Various Surface Treatment Methods on Shear Bond Strength of Orthodontic Brackets to Aged Composite Resin (시효된 복합레진 표면에 다양한 표면 처리 후 부착한 교정용 브라켓의 전단응력)

  • Park, Jongcheol;Park, Howon;Lee, Juhyun;Seo, Hyunwoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.41 no.2
    • /
    • pp.125-133
    • /
    • 2014
  • The purpose of this study was to investigate the effect of various surface treatment methods on the shear bond strength of orthodontic brackets in vitro. Ninety six specimens, 6 mm in diameter and 5 mm in height, were made with composite resin ($Filtek^{TM}$ Z350 XT, 3M ESPE, USA) and treated with an aging procedure. After aging, the specimens were randomly separated in six groups: (1) control with no surface treatment, (2) 37% phosphoric acid gel, (3) 4% hydrofluoric acid gel, (4) sodium bicarbonate particle abrasion, (5) diamond bur, and (6) 1 W carbon dioxide laser for 5s. The metal brackets were bonded to composite surfaces by means of an orthodontic adhesive (Transbond XT, 3M Unitek, USA). Shear bond strength values were evaluated with a universal testing machine (R&B Inc., Korea). Analysis of variance showed a significant difference between the groups. Group 5 had the highest mean shear bond strength (11.9 MPa), followed by group 6 (11.1 MPa). Among the experimental groups, group 2 resulted in the weakest mean shear bond strength (5.22 MPa). The results of this study suggest that the repair shear bond strength of the aged composite resin was acceptable by surface treatment with a carbon dioxide laser.

Comparison of the shear bond strength of brackets in regards to the light curing source (광중합기의 광원에 따른 브라켓 전단결합강도 비교)

  • Cha, Jung-Yul;Lee, Kee-Joon;Park, Sun-Hyung;Kim, Tae-Weon;Yu, Hyung-Seog
    • The korean journal of orthodontics
    • /
    • v.36 no.3 s.116
    • /
    • pp.198-206
    • /
    • 2006
  • With the introduction of the xenon plasma arc curing light and the LED curing light as orthodontic curing lights, the polymerizing time of orthodontic composites has clearly decreased. In contrast to various research cases regarding the polymerization time and bond strength of the xenon plasma arc curing light, not enough research exists on the LED curing light, including the appropriate polymerization time. The objective of this research was to compare the bond strength of the plasma curing light and the LED curing light in regards to the polymerization time. The polymerization time needed to achieve an appropriate adhesion strength of the bracket has also been studied. After applying orthodontic brackets using composite resin onto 120 human premolars, the plasma arc curing light and the LED curing light were used for polymerization for 4, 6, and 8 seconds accordingly. This research proved that the LED curing light provided appropriate bond strength for mounting orthodontic brackets even with short seconds of polymerization. The expensive cost and large size of the device limits the use of the plasma arc curing light, whereas the low cost and easy handling of the LED curing light may lead to greater use in orthodontics.

Shear bond strength of orthodontic bracket with hydrophilic primer (친수성 프라이머를 이용한 교정용 브라켓 접착시의 전단결합강도에 관한 연구)

  • Park, Chul-Wan;Cha, Kyung-Suk;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.32 no.4 s.93
    • /
    • pp.293-300
    • /
    • 2002
  • The purpose of this study was to evaluate the clinical effectiveness of hydrophilic primer, which claim to retain adequate bond strength on moistened enamel resulting from moisture or saliva contamination, by comparing the shear bond strength and adhesive failure patterns of brackets bonded using hydrophilic primer and conventional hydrophobic primer. Brackets were bonded to human premolars embedded in metal cylinders utilizing light cured adhesive, primed with either a hydrophilic primer(Transbond fm primer) or a conventional hydrophobic primer(Transbond XT primer). Each sample was exposed to varying degrees of artificial saliva contamination during the priming process. The shear bond strength was measured using a universal testing machine, and the adhesive failure patterns after debonding were visually examined by strereomicroscope and assessed using the adhesive remnant index(ARI). The results were as follows 1. In dry conditions, no significant differences in shear bond strength between Transbond W and Transbond XT primers were found. 2. Transbond MIP primer exhibited a significantly higher shear bond strength than Transbond XT primer in saliva-contaminated conditions, regardless of the degree of contamination. 3. When contaminated with one coat of saliva, Transbond MIP primer did not exhibit significant differences in shear bond strength compared to the dry condition. When contaminated with two coats of saliva, Transbond MIP primer exhibited a singnificantly lower shear bond strength compared to the dry condition. 4. The adhesive remnant index of the adhesive failure pattern had a tendency to decrease, as the degree of saliva contamination increased. Bracket-adhesive interface failure was observed in more than half of the saliva contaminated samples utilizing Transbond MIP primer, whereas the bond failure sites of the Transbond XT primer samples occurred almost exclusively at the adhesive-enamel interface in saliva-contaminated conditions. The results of this study suggest that in cases where moisture control is difficult, Transbond MIP primer is an effective alternative to conventional hydrophobic primers.

A COMPARATIVE STUDY OF THE SHEAR BOND STRENGTH AND ADHESIVE FAILURE PATTERN OF METAL BRACKETS BONDED ON NATURAL TEETH AND PORCELAIN TEETH (자연 치관과 포세린 치관상에서 교정용 브라켓 부착시 전단 결합 강도와 파절 양상에 관한 비교 연구)

  • Lee, Hyun-Sun;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.2
    • /
    • pp.195-204
    • /
    • 2008
  • Orthodontic brackets often need to be bonded to porcelain such as porcelain fused to metal crowns and porcelain jacket crowns. The purpose of this study was to evaluate the clinical usability of direct bonding system on porcelain teeth by measuring shear bond strength according to various conditions and observing adhesive failure patterns. The specimens, 20 maxillary premolars and 80 porcelain teeth that were produced by duplication of the labial surface of a maxillary first premolar were used and randomly divided into four groups of twenty teeth each. The 5 different preparation procedures tested: (1) application of 37% phosphoric acid on natural teeth, (2) sandblasting on porcelain surfaces, (3) sandblasting and application of 9.6% hydrofluoric acid on porcelain surfaces, (4) sandblasting and application of silane on porcelain surface, (5) sandblasting and application of 9.6% hydrofluoric acid and silane on porcelain surfaces. The metal brackets were bonded with Transbond $XT^{(R)}$ bonding material. The shear bond strength was tested by the micro universal testing machine(Kyung-Sung, Korea) and the amount of residual adhesive on the tooth surface after debonding was examined by stereoscope and assessed with an adhesive remnant index. The results of this study suggest that the direct bonding system on porcelain teeth with sandblasting, HF and porcelain primer is clinically useful.

  • PDF

Effect of tribochemical silica coating on the shear bond strength of rebonded monocrystalline ceramic brackets (단결정형 세라믹 브라켓의 재접착 시 tribochemical silica coating이 전단접착강도에 미치는 영향)

  • Jeon, Young-Mi;Son, Woo-Sung;Kang, Sang-Wook
    • The korean journal of orthodontics
    • /
    • v.40 no.3
    • /
    • pp.184-194
    • /
    • 2010
  • Objective: The purpose of this study was to investigate the effect of tribochemical silica coating on the shear bond strength (SBS) of rebonded ceramic brackets using nano-filled flowable composite resin. Methods: A total of 60 premolars were prepared and divided into 4 equal groups as follows: Tribochemical silica coating (TC) + Transbond XT (XT), TC + Transbond supreme LV (LV), Sandblast treatment (SA) + XT, SA + LV. Treated ceramic brackets were rebonded on the premolars using each adhesive. All samples were tested in shear mode on a universal testing machine. Results: SBS of silica coated groups were high enough for clinical usage (TCLV: 10.82 $\pm$ 1.82 MPa, TCXT: 11.50 $\pm$ 1.72 MPa). But, SBS of the sandblast treated groups had significantly lower values than the tribochemical silica coated groups (SALV, 1.23 $\pm$ 1.16 MPa; SAXT, 1.76 $\pm$ 1.39 MPa; p < 0.05). There was no difference between the shear bond strength by type of adhesive. In the silica coated groups, 77% of the samples showed bonding failure in the adhesive. In the sandblast treated group, all bonding failures occurred at the bracket-adhesive interface. Conclusions: The result of this study suggest that newly introduced nano-filled flowable composite resin and tribochemical silica coating application on debonded ceramic bracket bases can produce appropriate bond strengths for orthodontic bonding.

The effect of casein phosphopeptide amorphous calcium phosphate on the in vitro shear bond strength of orthodontic brackets

  • Park, Sun-Youn;Cha, Jung-Yul;Kim, Kyoung-Nam;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.43 no.1
    • /
    • pp.23-28
    • /
    • 2013
  • Objective: The purpose of this study was to evaluate the effect of casein phosphopeptide amorphous calcium phosphate (CPP-ACP) on the shear bond strength (SBS) of brackets bonded to non-demineralized teeth with either phosphoric acid etching or self-etching primer. Methods: Sixty human premolars were randomly assigned to 1 of 4 treatment groups (n = 15 each): phosphoric acid etching (group 1); self-etching primer (group 2); CPP-ACP for 2 weeks + phosphoric acid etching (group 3), and CPP-ACP for 2 weeks + self-etching primer (group 4). After bonding of the maxillary premolar metal brackets, specimens were subjected to shear forces in a testing machine. Scanning electron microscopy was used to observe etching patterns on the enamel surfaces of all teeth. A 2-way analysis of variance was used to test for effects of CPP-ACP and etching system on SBS. Results: Significantly higher mean SBSs were observed in groups subjected to phosphoric acid etching (i.e., groups 1 and 3; p < 0.05). On the other hand, SBSs did not appear to be influenced by CPP-ACP (i.e., groups 3 and 4; p > 0.05). We observed a uniform and clear etched pattern on the enamel surface of the phosphoric acid etching groups. Conclusions: CPP-ACP does not significantly affect the SBS of orthodontic brackets bonded to non-demineralized teeth, regardless of which adhesive method is used to bond the brackets.

Characteristics of Resin on Antimicrobial Properties of Calibration Devices. (교정장치의 항균에 따른 레진상의 특성)

  • Jo, Jeong-Ki
    • Journal of Digital Convergence
    • /
    • v.18 no.4
    • /
    • pp.309-314
    • /
    • 2020
  • Polymethyl methacrylate (PMMA) is concerned with promoting oral infection due to its low antibacterial activity. To overcome this, the nanoparticles of Ag-MSN, nGO, and CNP were mixed with MMA liquid in a weight ratio of 0, 0.25, 0.5, 1.0, 2.0% compared to resin powder using Orthocryl from Dentarum, a calibration resin, and then instructed by the manufacturer. Accordingly, a specimen for calibration was prepared by mixing PMMA: MMA (1.2: 1) ratio, and physical properties of the calibration resin, antifungal experiments, and statistical analysis were performed. As a result of antibacterial experiments, the antibacterial properties of Ag-MSN increased. In nGO, the antibacterial adhesive effect increased hydrophilicity, not a change in surface roughness. The higher the CNP concentration, the higher the antibacterial activity. This suggests its potential usefulness as an antibacterial dental material for orthodontic devices and temporary restorations.