Browse > Article
http://dx.doi.org/10.14400/JDC.2020.18.4.309

Characteristics of Resin on Antimicrobial Properties of Calibration Devices.  

Jo, Jeong-Ki (Department of Dental Laboratory Technology, Chungbuk Health & Science University)
Publication Information
Journal of Digital Convergence / v.18, no.4, 2020 , pp. 309-314 More about this Journal
Abstract
Polymethyl methacrylate (PMMA) is concerned with promoting oral infection due to its low antibacterial activity. To overcome this, the nanoparticles of Ag-MSN, nGO, and CNP were mixed with MMA liquid in a weight ratio of 0, 0.25, 0.5, 1.0, 2.0% compared to resin powder using Orthocryl from Dentarum, a calibration resin, and then instructed by the manufacturer. Accordingly, a specimen for calibration was prepared by mixing PMMA: MMA (1.2: 1) ratio, and physical properties of the calibration resin, antifungal experiments, and statistical analysis were performed. As a result of antibacterial experiments, the antibacterial properties of Ag-MSN increased. In nGO, the antibacterial adhesive effect increased hydrophilicity, not a change in surface roughness. The higher the CNP concentration, the higher the antibacterial activity. This suggests its potential usefulness as an antibacterial dental material for orthodontic devices and temporary restorations.
Keywords
Orthodontic resin; mesoporous; grapinoxide; cerium; nanoparticle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. M. Lino, C. S. O. Paulo, A. C. Vale, M. F. Vaz & L. S. Ferreira. (2013) Antifungal activity of dental resins containing amphotericin B-conjugated nanoparticles. Dent Mater. 29(10), :e252-e62. DOI : 10.1016 / j.dental.2013.07.023.   DOI
2 A. Peutzfeldt. Resin composites in dentistry : the monomer systems Eur J Oral Sic. 1997;105:97-116. DOI: 10.1111/j.1600-0722.1997.tb00188.   DOI
3 Ic RB, Ozturk F, Ates B, Malkoc MA, Kelestemur U. Level of residual monomerreleased from orthodontic acrylic materials. J Angle Orthod. 2014;Mar6. DOI: 10.2319/060713-435.1.
4 G. S. Lee. A study on flexural strength according to work conditions of Polymerizingorthodontic acrylic resin. Bulletin of Dongnam Health College. 2001;19:213-221. DOI.org/10.1002/app.29629.
5 H. S. Noh, J. M. Kim, S. Kim & T. S. Jeong. Effect of curing conditions on the monomerelution of orthodontic acrylic resin. J Korean Acad Pediatr Dent. 2008;35:477-484. DOI.org/10.17135/jdhs.2015.15.3.259.
6 Y. H. Ko, G. R. Kim Y. U. Yi &, H. H. Lee. Effect of curing methods on the flexural strengthof acrylic denture resins. J Korean Soc Dental Mater. 2013;40(4):289-295. DOI: 10.5681/joddd.2014.027.
7 J. Kenneth. Anusavice. Phillips' Science of Dental Materials. 11th ed;2006:143-169, 734-735.
8 U. Kedjarune, N. Charoenworaluk, S. Koontongkaew. Release of methyl methacrylate- 31 -from heat-cured and autopolymerized resins: Cytotoxicity testing related to residualmonomer. J Aust Dent. 1999;44:25-30. DOI.org/10.4012/dmj.26.296.   DOI
9 J. H. Jorge, E. T. Giampaolo, C. E. Vergani , A. L. Machado, A. C. Pavarina & I. Z. Carlos. (2006) Effct of post-polymerization heat treatments on the cytotoxicity of two denture base acrylic resins. J Appl Oral Sci. 14(3):203-7. DOI: 10.1590/S1678-77572006000300011.   DOI
10 J. H. Lee. et al. (2016). Development of long-term antimicrobial poly (methyl methacrylate) by incorporating mesoporous silica nanocarriers. Dent Mater 32, 1564-1574 DOI: 10.1016/j.dental.2016.09.001.   DOI
11 J. K. Jo et al.Rechargeable microbial anti-adhesive polymethyl methacrylate incorporating silver sulfadiazine-loaded mesoporous silica nanocarriers. Dent Mater; DOI.org/10.1016/j.dental.2017.07.009.
12 W. Wang, S. Liao, Y. Zhu, M. Liu, Q. Zhao & Y. Fu. (2015) Recent Applications of Nanomaterials in Prosthodontics. J Nanomater. 2015:11. DOI.; 10.1155/2015/408643.
13 G. C. Padovani, V. P. Feitosa, S. Sauro, F. R. Tay, G. Duran & A. J. Paula et al. Advances in Dental Materials through Nanotechnology: Facts, Perspectives and Toxicological Aspects. Trends Biotechnol. 2015;33(11):621-36. DOI: 10.1016/j.tibtech.2015.09.005.   DOI
14 Sharpe E., Andreescu D., Andreescu S. Oxidative Stress: Diagnostics, Prevention, and Therapy. American Chemical Society; Washington, DC, USA: 2011. Artificial nanoparticle antioxidants; pp. 235-253.DOI: 10.1021/bk-2011-1083.
15 Chen J, Peng H, Wang X, Shao F, Yuan Z, Han H.(2014) Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale. 6(3):1879-89. DOI: 10.1039/c3nr04941.   DOI
16 Chen H, Wang B, Gao D, Guan M, Zheng L, Ouyang H, et al.(2013) Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small. 9(16):2735-46. DOI: 10.1002/smll.201202792.   DOI
17 Morimune S, Nishino T, Goto T.(2012) Ecological Approach to Graphene Oxide Reinforced Poly (methyl methacrylate) Nanocomposites. ACS Appl Mater Interfaces. 4(7):3596-601.. DOI: 10.1021/am3006687.   DOI
18 J. S. Kim, E Kuk, K. N. Yu, J. H. Kim, S. J. Park & H. J. Lee. et al.(2007) Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 3(1):95-101. DOI: 10.1016/j.nano.2006.12.001.   DOI
19 Bai S, Wang C, Jiang W, Du N, Li J, Du J, et al. Etchingapproach to hybrid structures of PtPd nanocages andgraphene for efficient oxygen reduction reaction catalysts.Nano Res 2015;8:2789-99. DOI:10.1007/s12274-015-0755-5.   DOI
20 Khodadadi Dizaji A, Mortaheb HR, Mokhtarani B.Preparation of supported catalyst by adsorption ofpolyoxometalate on graphene oxide/reduced grapheneoxide. Mater Chem Phys 2017;199:424-34. DOI.org/10.1021/ie303220.   DOI