• Title/Summary/Keyword: Orthodontic adhesive

Search Result 79, Processing Time 0.027 seconds

THE SHEAR BOND STRENGTH OF TWO ADHESIVES BONDED TO COMPOSITE RESIN AND GLASS IONOMER CEMENT RESTORATIONS (복합레진과 Glass Ionomer Cement수복물에 대한 Bracket의 접착전단강도)

  • Han, Jae-Ik;Rhee, Byung-Tae
    • The korean journal of orthodontics
    • /
    • v.20 no.3 s.32
    • /
    • pp.583-591
    • /
    • 1990
  • If the bond strength is sufficient to resist orthodontic force, orthodontic brackets can be bonded to restorations. Orthodontic brackets were bonded to composite resin and glass ionomer cement restorations with no-mix adhesive or glass ionomer cement. The shear bond strength of adhesives bonded to restorations was studied in vitro. Orthodontic brackets were bonded to 10 extracted natural teeth, 40 composite resin restorations and 40 glass ionomer restorations. The surfaces of composite resin restorations were roughened or applied with bonding agent (Scothbond) after surface roughening. The surfaces of glass ionomer cement restorations were conditioned with acid etching or applied with Scotchbond to etched surface. The adhesive was no-mix resin or glass ionomer cement. The shear bond strength was measured. The results were as follows: 1. Orthodontic brackets could be bonded to composite resin restorations effectively as they could be bonded to acid etched enamel with no-mix adhesive. The shear bond strength was sufficient to resist orthodontic force and was not affected by bonding agent greatly. 2. The shear bond strength of no-mix adhesive bonded to acid etched glass ionomer cement restorations was sufficient to resist orthodontic force. However. the fracture risk of glass ionomer cement restorations was increased during debonding. The bonding agent couldn't increase the shear bond strength greatly. 3. The shear bond strength of glass ionomer cement bonded to glass ionomer cement restorations was lower than that of no-mix adhesive. The shear bond strength was sufficient to resist orthodontic force and was greatly decreased by bonding agent. 4. The shear bond strength of glass ionomer cement bonded to composite resin restorations was too low to resist orthodontic force.

  • PDF

Effect of applying adhesive after enamel etching on the shear bond strength of orthodontic brackets using light curing resin cements (광중합형 레진시멘트를 사용한 치열교정용 브라켓 접착 시 접착제 사용 유무가 산 부식한 법랑질의 전단접착강도에 미치는 영향)

  • Kim, Eung-Hyun;Kim, Jin-Woo;Park, Se-Hee;Lee, Yoon;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.4
    • /
    • pp.209-216
    • /
    • 2021
  • Purpose: The purpose of this study is to compare the shear bond strength of resin cement for orthodontic brackets without applying an adhesive primer, to the case of applying an adhesive primer. Materials and Methods: The specimens were divided into three experimental groups, Transbond XT, GC Ortho Connect and Orthomite LC, and the enamel surface was divided into two sections, one with 37% phosphoric acid and the other with 37% phosphoric acid and an adhesive primer or universal adhesive. Each of three types of cement was applied to orthodontic bracket, and after bonding, the shear bond strength was measured. Results: Transbond XT and Orthomite LC significantly increased shear bond strength when orthodontic brackets were bonded after applying an adhesive primer and universal adhesive, respectively. Conclusion: It is expected that application of an adhesive primer or universal adhesive after acid etching will improve shear bond strength of orthodontic brackets in Transbond XT and Orthomite LC.

SHEAR BOND STRENGTH OF METAL BRACKETS BONDED WITH LIGHT-CURED ADHESIVE: AN IN VITRO COMPARATIVE STUDY (광중합 접착제로 접착된 금속 브라켓의 전단접착강도에 관한 연구)

  • Chang, Young-Il;Lee, Suhng-Jin
    • The korean journal of orthodontics
    • /
    • v.22 no.2 s.37
    • /
    • pp.289-296
    • /
    • 1992
  • The purpose of this study was to evaluate and compare the shear bond strengths and failure sites of metal brackets bonded with chemically cured adhesive and light-cured adhesive. 10 brackets were bonded on prepared enamel surfaces with $Transbond^{circledR}$ (Unitek/3M; U.S.A.) light-cured orthodontic adhesive and another 10 brackets were bonded with $Ortho-one^{\circledR}$ (Bisco:U.S.A.) chemically cured orthodontic adhesive. 24 hours after bonding, the Instron universal testing machine was used to measure the shear bond strengths. The failure sites were examined under streoscopic microscope. The results were as follows: 1 . The mean shear bond strength of metal brackets bonded with light-cured adhesive was lower than that of metal brackets bonded with chemically cured adhesive, but the difference was not statistically significant (p < 0.05). 2. Regardless of the type of adhesives, the brackets were failed primarily at the bracket base-adhesive interface. 3. Bonding of metal brackets with light-cured adhesive is considered to be clinically acceptable.

  • PDF

TENSILE STRENGTH OF ORTHODONTIC DIRECT BONING ADHESIVES (교정용 접착제의 인장강도)

  • Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.12 no.1
    • /
    • pp.15-20
    • /
    • 1982
  • The requirement of ideal orthodontic direct bonding adhesive should include longevity of bond, ability to withstand a variety of forces, resistance to the degrading effects of the oral environment, and ability to be easily removed without affecting the integrity of the enamel. The purpose of this study was to evaluate the adhesive properties of recently developed 3 orthodontic directbonding adhesives by testing the tensile strength. 75 premolars extracted for orthodontic treatment were used. The tensile strength was tested by Tensilon/UTM-1-10000C after 24 hours from bonding. Following results were obtained; The mean tensile strength of each product was higher than the maximum force $(29kg/cm^2)$ exerted on a bracket during orthodontic treatment. The tensile strength of Mono-Lok was statistically higher than Concise and Dyna-Bond, although there was no difference between the tensile strength of Concise and Dyna-Bond statistically. Of the filure, the combination type of failure $(68\%)$, where part of the adhesive remained on the tooth and part on the bracket was the most common type. The second type of failure $(22.7\%)$ occurred at the toothadhesive interface and the last type of failure $(9.3\%)$ occurred at the adhesive-bracket interface.

  • PDF

Antibacterial and remineralization effects of orthodontic bonding agents containing bioactive glass

  • Kim, You-Min;Kim, Dong-Hyun;Song, Chang Weon;Yoon, Seog-Young;Kim, Se-Yeon;Na, Hee Sam;Chung, Jin;Kim, Yong-Il;Kwon, Yong Hoon
    • The korean journal of orthodontics
    • /
    • v.48 no.3
    • /
    • pp.163-171
    • /
    • 2018
  • Objective: The aim of this study was to evaluate the mechanical and biological properties of orthodontic bonding agents containing silver- or zinc-doped bioactive glass (BAG) and determine the antibacterial and remineralization effects of these agents. Methods: BAG was synthesized using the alkali-mediated solgel method. Orthodontic bonding agents containing BAG were prepared by mixing BAG with flowable resin. $Transbond^{TM}$ XT (TXT) and $Charmfil^{TM}$ Flow (CF) were used as controls. Ion release, cytotoxicity, antibacterial properties, the shear bond strength, and the adhesive remnant index were evaluated. To assess the remineralization properties of BAG, micro-computed tomography was performed after pH cycling. Results: The BAG-containing bonding agents showed no noticeable cytotoxicity and suppressed bacterial growth. When these bonding agents were used, demineralization after pH cycling began approximately 200 to $300{\mu}m$ away from the bracket. On the other hand, when CF and TXT were used, all surfaces that were not covered by the adhesive were demineralized after pH cycling. Conclusions: Our findings suggest that orthodontic bonding agents containing silver- or zinc-doped BAG have stronger antibacterial and remineralization effects compared with conventional orthodontic adhesives; thus, they are suitable for use in orthodontic practice.

SHEAR BOND STRENGTH OF ORTHODONTIC BONDING RESINS TO PORCELAIN; AN IN VITRO STUDY (도재에 대한 교정용 브라켓 접착 레진의 전단접착강도에 관한 연구)

  • Ko, Jin-Hwan;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.22 no.1
    • /
    • pp.43-65
    • /
    • 1992
  • Bonding orthodontic adhesive resins to glazed porcelain surface is not attainable. The aim of this investigation was to examine, in vitro, the effect of three methods of porcelain surface pretreatment on the shear bond strength of orthodontic adhesives, and to compare the shear strength of orthodontic bracket bonding to porcelain surface by the best results that to human enamel. Porcelain disks ($Ceramco^{(TM)}$ and $Vita^{(TM)}$) baked in the laboratory were roughened by sandpapers, #320, #600, #800, #1000 and #1200, and were pretreated with silane and dried at the various temperatures, room temperature, $50^{\circ}C$, $70^{\circ}C$ and $90^{\circ}C$, and were etched by 3% hydrofluoric acid solution for 1, 3, 5, 7, and 9 minutes, orthodontic adhesives (System $1+^{(TM)}$ and $Unite^{(TM)}$) were applied on them, and shear bond strengths were measured by Instron. The best results of pretreatment of each method were determined by the shear bond strengths. Again, porcelain disks were pretreated by the determined best results and human enamel were etched by 37% hydrofluoric acid solution, orthodontic brackets were bonded on them by the orthodontic adhesives, and the shear bond strengths were measured and compared between them. 1. Roughening porcelain surfaces with coarse sandpaper (#300) showed higher shear bond strength than that with finer sandpapers, but it $(22.44Kgf/cm^2)$ was distinguishably low compared to that from etched human enamel $(144.11Kgf/cm^2)$. 2. There were disparities in shear bond strengths upon the orthodontic resins, which was presumably related to the contents of fillers in orthodontic adhesive resins. Also there were disparities in shear bond strength upon the porcelains which had different composition. 3. Silane enhanced the shear bond strength of orthodontic resins to porcelain surfaces ($25.20Kgf/cm^2$ at $50^{\circ}C$), which was markedly low compared to that from etched human enamel. 4. Etched porcelain surface with 3% hydrofluoric acid solution for 1 to 9 minutes showed no difference in shear bonding strength of orthodontic adhesive resins. Shear bond strength from etched porcelain $(97.43-120.72Kgf/cm^2)$ were as high as clinically available, but low compared to that from etched human enamel. 5. Roughening with #300 sandpaper and etching by 3% hydrofluoric acid followed silane application on porcelain surface showed lower shear bond strength than etched human enamel, but were as high as clinically useful. 6. The results suggest that etching porcelain surface by 3% hydrofluoric acid solution might provide comparatively high shear bond strength as much as clinically favorable.

  • PDF

Effects of contamination by either blood or a hemostatic agent on the shear bond strength of orthodontic buttons

  • Gungor, Ahmet Yalcin;Alkis, Huseyin;Turkkahraman, Hakan
    • The korean journal of orthodontics
    • /
    • v.43 no.2
    • /
    • pp.96-100
    • /
    • 2013
  • Objective: To evaluate the effects of contamination by either blood or a hemostatic agent on the shear bond strength (SBS) of orthodontic buttons. Methods: We used 45 freshly extracted, non-carious, impacted third molars that were divided into 3 groups of 15. Each tooth was etched with 37% phosphoric acid gel for 30 s. Human blood or the blood stopper agent was applied to the tooth surface in groups I and II, respectively. Group III teeth were untreated (controls). Orthodontic buttons were bonded to the teeth using light-curing composite resin. After bonding, the SBS of the button was determined using a Universal testing machine. Any adhesive remaining after debonding was assessed and scored according to the modified adhesive remnant index (ARI). ANOVA with post-hoc Tukey's test was used to determine significant differences in SBS and Fisher's exact test, to determine significant differences in ARI scores among groups. Results: ANOVA indicated a significant difference between groups (p < 0.001). The highest SBS values were measured in group III ($10.73{\pm}0.96$ MPa). The SBS values for teeth in groups I and II were significantly lower than that of group III (p < 0.001). The lowest SBS values were observed in group I teeth ($4.17{\pm}1.11$ MPa) (p < 0.001). Conclusions: Contamination of tooth surfaces with either blood or hemostatic agent significantly decreased the SBS of orthodontic buttons. When the contamination risk is high, it is recommended to use the blood stopper agent when bonding orthodontic buttons on impacted teeth.

Effects of ultrasonic instrumentation with different scaler-tip angulations on the shear bond strength and bond failure mode of metallic orthodontic brackets

  • Bonetti, Giulio Alessandri;Parenti, Serena Incerti;Ippolito, Daniela Rita;Gatto, Maria Rosaria;Checchi, Luigi
    • The korean journal of orthodontics
    • /
    • v.44 no.1
    • /
    • pp.44-49
    • /
    • 2014
  • Objective: To evaluate the effects of ultrasonic instrumentation with different scaler-tip angulations on the shear bond strength (SBS) and bond failure mode of metallic orthodontic brackets. Methods: Adhesive pre-coated metallic brackets were bonded to 72 extracted human premolars embedded in autopolymerizing acrylic resin. The teeth were randomly divided into 3 groups (n = 24 each) to undergo no treatment (control group) or ultrasonic instrumentation with a scaler-tip angulation of $45^{\circ}$ ($45^{\circ}$-angulation group) or $0^{\circ}$ ($0^{\circ}$-angulation group). SBS was tested in a universal testing machine, and adhesive remnant index (ARI) scores were recorded. The Kruskal-Wallis test and Mann-Whitney U-test were used for statistical analysis. Results: The control group had a significantly higher mean SBS value than the treated groups, which showed no significant differences in their mean SBS values. The ARI scores were not significantly different among the groups. Conclusions: Ultrasonic instrumentation around the bracket base reduces the SBS of metallic orthodontic brackets, emphasizing the need for caution during professional oral hygiene procedures in orthodontic patients. The scaler-tip angulation does not influence the SBS reduction and bond failure mode of such brackets.

Bond strength of orthodontic brackets bonded to enamel with a self-etching primer after bleaching and desensitizer application (미백과 탈감작제 도포 후 셀프 에칭 프라이머를 이용한 브라켓 접착 시 법랑질과 브라켓 간의 결합 강도)

  • Attar, Nuray;Korkmaz, Yonca;Kilical, Yasemin;Saglam-Aydinatay, Banu;Bicer, Ceren Ozge
    • The korean journal of orthodontics
    • /
    • v.40 no.5
    • /
    • pp.342-348
    • /
    • 2010
  • Objective: The aim of this study was to compare the shear bond strengths (SBS) of orthodontic brackets bonded to enamel with a self-etching primer after bleaching, desensitizer application and combined treatment. Methods: Forty-eight premolars were randomly divided into four groups, each with n = 12 premolar samples. The four groups were; Group1: 15% hydrogen-peroxide office bleaching agent (Illumin$\acute{e}$ Office-IO), Group 2: IO + BisBlock Oxalate Dentin-Desensitizer, Group 3: Bis Block Oxalate Dentin-Desensitizer, Group 4: No treatment (control). Twenty-four hours after bonding, the specimens were tested in SBS at a crosshead speed of 5 mm/min until the brackets debonded. The failure mode of the brackets was determined by a modified adhesive remnant index. Results: Bleaching, bleaching and desensitizer treatment, and desensitizer treatment alone all significantly reduced SBS of the orthodontic brackets ($p$ = 0.001). No statistically significant difference was found between Group 1, Group 2 and Group 3 (Group 1-Group 2, $p$ = 0.564; Group 1-Group 3, $p$ = 0.371; Group 2-Group 3, $p$ = 0.133). The predominant mode of failure for the treatment groups (Group1, Group 2 and Group 3) was at the enamel-adhesive interface leaving 100% of the adhesive on the bracket base. Conclusions: Bleaching and desensitizer treatment should be delayed until the completion of orthodontic treatment.

Comparison of shear bond strength of orthodontic brackets using various zirconia primers

  • Lee, Ji-Yeon;Kim, Jin-Seok;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.45 no.4
    • /
    • pp.164-170
    • /
    • 2015
  • Objective: The aim of this study was to compare the shear bond strength (SBS) of orthodontic brackets bonded to zirconia surfaces using three different zirconia primers and one silane primer, and subjected to thermocycling. Methods: We designed 10 experimental groups following the surface treatment and thermocycling. The surface was treated with one of the following method: no-primer (NP), Porcelain Conditioner (PC), Z-PRIME Plus (ZP), Monobond Plus (MP) and Zirconia Liner Premium (ZL) (n=20). Then each group was subdivided to non-thermocycled and thermocycled groups (NPT, PC, ZPT, MPT, ZLT) (n=10). Orthodontic brackets were bonded to the specimens using $Transbond^{TM}$ XT Paste and light cured for 15 s at $1,100mW/cm^2$. The SBS was measured at a 1 mm/min crosshead speed. The failure mode was assessed by examination with a stereomicroscope and the amount of bonding resin remaining on the zirconia surface was scored using the modified adhesive remnant index (ARI). Results: The SBS of all experimental groups decreased after thermocycling. Before thermocycling, the SBS was ZL, $ZP{\geq}MP{\geq}PC>NP$ but after thermocycling, the SBS was $ZLT{\geq}MPT{\geq}ZPT>PCT=NPT$ (p > 0.05). For the ARI score, both of the groups lacking primer (NP and NPT) displayed adhesive failure modes, but the groups with zirconia primers (ZP, ZPT, MP, MPT, ZL, and ZLT) were associated with mixed failure modes. Conclusions: Surface treatment with a zirconia primer increases the SBS relative to no-primer or silane primer application between orthodontic brackets and zirconia prostheses.