• Title/Summary/Keyword: Ortho Image

Search Result 177, Processing Time 0.021 seconds

Research on the Variation of Deposition & Accumulation on the Shorelines using Ortho Areial Photos (수치항공사진을 이용한 해안선 침퇴적변화에 관한 연구)

  • Choi, Chul-Uong;Lee, Chang-Hun;Oh, Che-Young;Son, Jung-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.23-31
    • /
    • 2009
  • The border of the shorelines in a nation is an important factor in determining the border of a national territory, but Korea's shorelines are rapidly changing due to the recent rise in sea level from global warming and growth-centered economic policy over the decades of years. This research was done centering on the areas having well-preserved shorelines as they naturally are and other areas having damaged shorelines in their vicinities due to artificial structures at the two beaches located at the neighboring areas and having mutually homogeneous ocean conditions with each other. First, this research derived the shorelines using the aerial photographies taken from 1947 until 2007 and revised the tidal levels sounding data obtained from a hydrographical survey automation system consisting of Echosounder[Echotrac 3100] and Differential Global Positioning System[Beacon]by using topographical data and ships on land obtained by applying post-processing Kinematic GPS measuring method. In addition, this research evaluated the changes and dimensional variations for the last 60 years by dividing these determined shorelines into 5 sections. As a result, the Haewundae Beach showed a total of 29% decrease rate in dimension as of the year 2007 in comparison with the year 1947 due to a rapid dimensional decline centering on its west areas, while the dimension of the Gwanganri Beach showed an increase in its dimension amounting to a total of 69% due to the decrease in flow velocity by artificial structures built on both ends of the beach-forming accumulation; thus, it was found that there existed a big difference in deposition & accumulation tendency depending on neighboring environment in spite of the homogeneous ocean conditions.

  • PDF

Evaluation of Accuracy and Utilization of the Drone Photogrammetry for Open-pit Mine Monitoring (노천광산 모니터링을 위한 드론 사진측량의 정확도 및 활용성 평가)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.191-196
    • /
    • 2019
  • The development of open-pit mines leads to large-area topographical changes in highland forests and can lead to severe deterioration of forests, requiring continuous monitoring. The drone photogrammetry is performed at a lower altitude than the existing manned aerial photogrammetry, and thus has a relatively high accuracy. The purpose of this study is to construct spatial information of large open pit mine using drone photogrammetry and to evaluate the accuracy and utilization of the results. The accuracy of the drone photogrammetric results was 0.018 ~ 0.063m in the horizontal direction and 0.027m ~ 0.088m in the vertical direction. These results satisfy the permissible accuracy of 1: 1,000 digital topographic map and it can be used for open mine monitoring. The geospatial information of the open pit mine can be used in various ways, and it can be used to monitor the quantitative change of a specific area for time series change through data management by periodic data acquisition. If drone photogrammetry is applied to open-pit mine monitoring in the future, work time and cost can be greatly reduced compared to the conventional GNSS or total station method, and the work efficiency can be greatly improved because more visible data can be generated.

A Study on the Improvement of UAV based 3D Point Cloud Spatial Object Location Accuracy using Road Information (도로정보를 활용한 UAV 기반 3D 포인트 클라우드 공간객체의 위치정확도 향상 방안)

  • Lee, Jaehee;Kang, Jihun;Lee, Sewon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.705-714
    • /
    • 2019
  • Precision positioning is necessary for various use of high-resolution UAV images. Basically, GCP is used for this purpose, but in case of emergency situations or difficulty in selecting GCPs, the data shall be obtained without GCPs. This study proposed a method of improving positional accuracy for x, y coordinate of UAV based 3 dimensional point cloud data generated without GCPs. Road vector file by the public data (Open Data Portal) was used as reference data for improving location accuracy. The geometric correction of the 2 dimensional ortho-mosaic image was first performed and the transform matrix produced in this process was adopted to apply to the 3 dimensional point cloud data. The straight distance difference of 34.54 m before the correction was reduced to 1.21 m after the correction. By confirming that it is possible to improve the location accuracy of UAV images acquired without GCPs, it is expected to expand the scope of use of 3 dimensional spatial objects generated from point cloud by enabling connection and compatibility with other spatial information data.

Comparison and Analysis of Matching DEM Using KOMPSAT-3 In/Cross-track Stereo Pair (KOMPSAT-3 In/Cross-track 입체영상을 이용한 매칭 DEM 비교 분석)

  • Oh, Kwan-Young;Jeong, Eui-Cheon;Lee, Kwang-Jae;Kim, Youn-Soo;Lee, Won-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1445-1456
    • /
    • 2018
  • The purpose of this study is to compare the quality and characteristics of matching DEMs by using KOMPSAT-3 stereo pair capture in in-track and cross-track. For this purpose, two stereo pairs of KOMPSAT-3 were collected that were taken in the same area. The two stereo pairs have similar stereo geometry elements such as B/H, convergence angle. Sensor modeling for DEM production was performed with RFM affine calibration using multiple GCPs. The GCPs used in the study were extracted from the 0.25 m ortho-image and 5 meter DEM provided by NGII. In addition, matching DEMs were produced at the same resolution as the reference DEMs for a comparison analysis. As a result of the experiment, the horizontal and vertical errors at the CPs indicated an accuracy of 1 to 3 pixels. In addition, the shapes and accuracy of two DEMs produced in areas where the effects of natural or artificial surface land were low were almost similar.

Accuracy Evaluation of Earthwork Volume Calculation According to Terrain Model Generation Method (지형모델 구축 방법에 따른 토공물량 산정의 정확도 평가)

  • Park, Joon Kyu;Jung, Kap Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.47-54
    • /
    • 2021
  • Calculation of quantity at construction sites is a factor that has a great influence on construction costs, and it is important to calculate accurate values. In this study, topographic model was created by using drone photogrammetry and drone LiDAR to estimate earthwork volume. ortho image and DSM (Digital Surface Model) were constructed for the study area by drone photogrammetry, and DEM (Digital Elevation Model) of the target area was established using drone LiDAR. And through accuracy evaluation, accuracy of each method are 0.034m, 0.35m in horizontal direction, 0.054m, 0.25m in vertical direction. Through the research, the usability of drone photogrammetry and drone LiDAR for constructing geospatial information was presented. As a result of calculating the volume of the study site, the UAV photogrammetry showed a difference of 1528.1㎥ from the GNSS (Global Navigation Satellite System) survey performance, and the 3D Laser Scanner showed difference of 160.28㎥. The difference in the volume of earthwork is due to the difference in the topographic model, and the efficiency of volume calculation by drone LiDAR could be suggested. In the future, if additional research is conducted using GNSS surveying and drone LiDAR to establish topographic model in the forest area and evaluate its usability, the efficiency of terrain model construction using drone LiDAR can be suggested.

CAS 500-1/2 Image Utilization Technology and System Development: Achievement and Contribution (국토위성정보 활용기술 및 운영시스템 개발: 성과 및 의의)

  • Yoon, Sung-Joo;Son, Jonghwan;Park, Hyeongjun;Seo, Junghoon;Lee, Yoojin;Ban, Seunghwan;Choi, Jae-Seung;Kim, Byung-Guk;Lee, Hyun jik;Lee, Kyu-sung;Kweon, Ki-Eok;Lee, Kye-Dong;Jung, Hyung-sup;Choung, Yun-Jae;Choi, Hyun;Koo, Daesung;Choi, Myungjin;Shin, Yunsoo;Choi, Jaewan;Eo, Yang-Dam;Jeong, Jong-chul;Han, Youkyung;Oh, Jaehong;Rhee, Sooahm;Chang, Eunmi;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.867-879
    • /
    • 2020
  • As the era of space technology utilization is approaching, the launch of CAS (Compact Advanced Satellite) 500-1/2 satellites is scheduled during 2021 for acquisition of high-resolution images. Accordingly, the increase of image usability and processing efficiency has been emphasized as key design concepts of the CAS 500-1/2 ground station. In this regard, "CAS 500-1/2 Image Acquisition and Utilization Technology Development" project has been carried out to develop core technologies and processing systems for CAS 500-1/2 data collecting, processing, managing and distributing. In this paper, we introduce the results of the above project. We developed an operation system to generate precision images automatically with GCP (Ground Control Point) chip DB (Database) and DEM (Digital Elevation Model) DB over the entire Korean peninsula. We also developed the system to produce ortho-rectified images indexed to 1:5,000 map grids, and hence set a foundation for ARD (Analysis Ready Data)system. In addition, we linked various application software to the operation system and systematically produce mosaic images, DSM (Digital Surface Model)/DTM (Digital Terrain Model), spatial feature thematic map, and change detection thematic map. The major contribution of the developed system and technologies includes that precision images are to be automatically generated using GCP chip DB for the first time in Korea and the various utilization product technologies incorporated into the operation system of a satellite ground station. The developed operation system has been installed on Korea Land Observation Satellite Information Center of the NGII (National Geographic Information Institute). We expect the system to contribute greatly to the center's work and provide a standard for future ground station systems of earth observation satellites.

Wind Corridor Analysis and Climate Evaluation with Biotop Map and Airborne LiDAR Data (비오톱 지도와 항공라이다 자료를 이용한 바람통로 분석 및 기후평가)

  • Kim, Yeon-Mee;An, Seung-Man;Moon, Soo-Young;Kim, Hyeon-Soo;Jang, Dae-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.148-160
    • /
    • 2012
  • The main purpose of this paper is to deliver a climate analysis and evaluation method based on GIS by using airborne LiDAR data and Biotop type map and to provide spatial information of climate analysis and evaluation based on Biotop type Map. At first stage, the area, slope, slope length, surface, wind corridor function and width, and obstacle factors were analyzed to obtain cold/fresh air production and wind corridor evaluation. In addition, climate evaluation was derived from those two results in the second stage. Airborne LiDAR data are useful in wind corridor analysis during the study. Correlation analysis results show that ColdAir_GRD grade was highly correlated with Surface_GRD (-0.967461139) and WindCorridor_ GRD was highly correlated with Function_GRD (-0.883883476) and Obstacle_GRD (-0.834057656). Climate Evaluation GRID was highly correlated with WindCorridor_GRD (0.927554516) than ColdAir_GRD (0.855051646). Visual validations of climate analysis and evaluation results were performed by using aerial ortho-photo image, which shows that the climate evaluation results were well related with in-situ condition. At the end, we applied climate analysis and evaluation by using Biotop map and airborne LiDAR data in Gwangmyung-Shiheung City, candidate for the Bogeumjari Housing District. The results show that the aerial percentile of the 1st Grade is 18.5%, 2nd Grade is 18.2%, 3rd Grade is 30.7%, 4th Grade is 25.2%, and 5th Grade is 7.4%. This study process provided both the spatial analysis and evaluation of climate information and statistics on behalf of each Biotop type.