• Title/Summary/Keyword: Orifice Type

Search Result 215, Processing Time 0.024 seconds

The Experimental Study on the Interaction of Dual Orifice Type Swirl Injectors (이중선회 분무간의 상호작용에 관한 실험적 연구)

  • Kim, H.J.;Park, B.S.;Kim, H.Y.;Chung, J.T.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.119-126
    • /
    • 2001
  • The effects of injection pressure and the distance between injectors on the droplet distribution characteristics of liquid spray for dual orifice type swirl injectors were experimentally investigated. The SMD distributions, volume concentration and Rosin- Rammler variation N of liquid spray droplets for water and a fuel were measured by using the laser diffraction particle sizer. The results of present study show that SMD decreases and spray angle increases as the injection pressure increases. The interaction of sprays from two injectors gives more uniform SMD distribution in the radial direction. As the distance between two injectors increases, SMD that is measured in the interacting region increases. The effect of viscosity on the droplet distribution in the interacting region is greater than the that of surface tension of liquid.

  • PDF

A Study on Conrol of Surfacial and Internal Microsructure in Thixoforming Process (반용융 성형공장에서 표면 및 내부 조직 제어에 관한 연구)

  • 이동건
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.169-172
    • /
    • 1999
  • Thixoforming process has been accepted as a new method for fabricating near net shaped products with lighweight aluminum alloys. The thixoforming process consists of reheating process of billet, billet handing filling into the die cavity and solidification of thixoformed part,. in this paper the thixoforming experiments are performed with two different die temperature ({{{{ TAU _d}}}}=20$0^{\circ}C$ 30$0^{\circ}C$) and orifice gate type. The microstructures of SSM(357, A490 and ALTHIX 86S) fabricated in thixoforming process are evaluated in therms of globularization and grain size. effect of alloying elements onthe surface and internal defects is investigated. Finally the methods to obtain the thixoformed products with good mechanical propertis are proposed by solution for avoiding the surface and internal defects.

  • PDF

Development of Water Wheel Type Oil Skimmer (수차형 유회수기의 개발)

  • 노준혁;박안진;강상훈;이영식;김종현;윤범상
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.123-128
    • /
    • 2000
  • The ocean is now increasingly suffering from pollution mainly caused by oil spill accidents roil increasing marine transportation. It cause not only the deterioration of ocean resources but also critical damage on the ocean ecosystem. Present study is an experimental one for the development of the oil skimmer which can collect spilled-oil actively and effectively from the sea surface. As an effort of achieving it, a new type of water wheel attached nil skimmer was devised, based upon the concept of orifice. The shapes of the water wheel, blades and oil storing tank are found to be very important factors on the oil skimming performance through systematic experimental analysis. Real oil recovery test was also carried out in square tank using the oil skimmer with their optimal shapes. Quite satisfactory result are obtained from the test which showed 99% and 98% recovery rates for light oil and heavy oil in still water condition, respectively.

  • PDF

Analysis of Channel Flow Low During Fuelling Operation of Selected Fuel Channels at Wolsong NPP

  • I. Namgung;Lee, S.K.
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.502-516
    • /
    • 2002
  • Wolsong NPP are CANDU6 type reactors and there are 4 CANDU6 type reactors in commercial operation. CANDU type reactors require on-power refuelling by two remote controlled F/Ms (Fuelling Machines). Most of channels, fuel bundles are float by channel coolant flow and move toward downstream, however in about 30% of channels the coolant flow are not sufficient enough to carry fuel bundles to downstream. For those channels a special device, FARE (Flow Assist Ram Extension) device, is used to create additional force to push fuel bundles. It has been showing that during fuelling operation of some channels the channel coolant flow rate is reduced below specified limit (80% of normal), and consequently trip alarm signal turns on. This phenomenon occurs on selected channels that are instrumented for the channel flow and required to use the FARE device for refuelling. Hence it is believed that the FARE device causes the problem. It is also suspected that other channels that do not use the FARE device for refuelling might also go into channel flow low state. The analysis revealed that the channel How low occurs as the FARE device is introduced into the core and disappears as the FARE device is removed from the core. This paper presented the FARE device behavior, detailed fuelling operation sequence with the FARE device and effect on channel flow low phenomena. The FARE device components design changes are also suggested, such as increasing the number or now holes in the tube and flow slots in the ring orifice.

Flow Visualization of Plastic type PCV Valve with Horizontal Force (수평력을 받는 Plastic type PCV 밸브 내부 유동 가시화)

  • Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2012
  • PCV(Positive Crankcase Ventilation) system is designed to remove blowby gas. In this system, a PCV valve is attached in a manifold suction tube to control the flow rate of blowby gas which generates various operating conditions of an automotive engine. As this valve plays a crucial role, the demand in its design is high owing to the small size and high velocity. For this reason, a numerical investigation was carried out to understand both the spool dynamic motion and internal fluid flow characteristics. As a result, the spool dynamic characteristics(i.e. displacement, velocity, acting force), increase in direct proportion to the magnitude of the pressure difference and indicate periodic oscillating motions. Moreover, the velocity at the orifice region decreases according to the increase in differential pressure due to energy loss caused by the sudden decrease of flow area at the orifice region and the increase of flow volume in front of the spool head. Finally, the mass flow rate at the outlet decreases with the increase of spool displacement.

The Methods to Improve the In-Line Eductor (포소화약제 혼합장치의 개량화 방안)

  • Joo, Seung-Ho;Lim, Mann-Taek;Kim, Hye-Won;Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.275-282
    • /
    • 2011
  • A core device of foam system is the in-line eductor and it is the device to mix the foam liquid into liquid solution proper to the use density and the mixture ratio must be kept regularly regardless of changing fluid condition of the front and rear end of the in-line eductor. However, if the flux of the pressurized water changes, the mixture ratio is not kept regularly, and so it becomes a cause which a performance of fire-extinguishing deteriorates in discharging foam liquid. I devise a method to improve it that the metering orifice type in-line eductor is improved into the metering venturi type in-line eductor, the fluctuation of the mixture ratio to the flux change of the pressurized water is minimized and the performance of fire-extinguishing is kept regularly. As this method is simple in its structure and can be designed at a low cost, it helps for maintenance as well. In the future, it seems to need the research for the metering nozzle type in-line eductor in the future.

The Cooling Characteristics for Circular Irradiation Hole under Suppressing Jet Flow at Guide Tube in HANARO (안내관 제트유동 억제시의 하나로 원형 조사공의 냉각특성)

  • Wu S. I.;Park P. C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.208-213
    • /
    • 2004
  • The HANARO, multi-purpose research reactor, 30 MWth open-tank-in- pool type, is under normal operation since it reached the initial critical in February 1995. The HANARO is planning to produce a fission moly-99 of radio isotopes, a mother nuclide of Tc-99m, a medical isotope and is under developing a target handling tool for loading and unloading it in a circular flow tube (OR-5). A guide tube is extended from the reactor core to the top of the reactor chimney for easily un/loading a target under the reactor normal operation. But active coolant through the core can be quickly raised up to the top of the chimney through the guide tube by jet flow. This paper is described an analytical analysis to calculate the hole size of a orifice inserted in the circular irradiation hole and to study the flow characteristics through the guide tube under reactor normal operation and loading the target. As results, the results show that the hole size of orifice was 31 mm of the inner diameter to suppress the guide tube jet flow and the coolant safely cooled the target of fission moly after inserting the orifice to the flow tube.

  • PDF

A Study on Parameters of SUAV Landing Gear Orifice (SUAV 착륙장치 오리피스의 파라미터 연구)

  • Han, Jae-Do;Kang, Yeon-Sik;Ahn, Oh-Sung;Lee, Young-Sin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.99-104
    • /
    • 2009
  • In this paper, the drop characteristic of the small aircraft landing gear of SUAV has been analyzed and performed on orifice optimal design for shock absorption efficiency. The SUAV landing gear was simple oleo pneumatic type without metering pin. The landing gear was modelled by MSC ADAMS software. Drop test evaluation was conducted to confirm the analysis model. As a result of correlation between analysis and test results, it was verified that these results were coincided with very well. After confidence review of analysis model through the correlation between test and analysis results, design parametric study was performed by using confirmed analysis model. Optimal orifice size with best efficiency have been decided in this study.

Numerical Study of Particle Motion and Particle Beam Formation Through a Critical Orifice (임계 오리피스를 통과한 입자의 운동특성과 입자 빔에 관한 수치적 연구)

  • Ahn, Jin-Hong;Ahn, Kang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1240-1247
    • /
    • 1999
  • Particle motion through a disk type critical orifice placed in a 3.0cm diameter chamber has been studied numerically. In the simulation, the velocity field is solved using Pantankar's SIMPLER algorithm for the compressible flow and convergence of the computation is confirmed if the mass source at each control volume is smaller than $10^{-7}$. The particle motion in the flow field is solved in Lagrangian method. The particle trajectories showed that the particles injected away from the center line are expanded rapidly. At lower pressures, this expansion phenomena are more dominant. At lower pressures, the clear difference in particle and air speed is showed all the way down to the exit plan. It was found that particles with Stokes number of ca.2.5 tend to focus close to the center line very well except the particles travelling near the wall. However, particles with Stokes number greater than ca.2.5 show a tendency to cross the center line.

A Study on Estimate of Flow Coefficient with Variation of Hole Number in Multi-hole Diesel Nozzle (다공 디젤노즐의 홀수 변화에 따른 우량계수 평가에 관한 연구)

  • 이지근;조원일;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.59-66
    • /
    • 2001
  • This experimental study is to investigate the flow characteristics of the multi-hole nozzle used in the fuel injection system of a heavy-duty diesel engine. A multi-hole diesel nozzle with a 2-spring nozzle holder was used in this study and without changing the total orifice exit area, its hole number varied from 3($d_n$=0.42mm) to 8($d_n$=0.25mm). The injection pressure and needle lift were measured and Bosch type injection rates measurement system was used. The discharge flowrates of each orifice in the multi-hole nozzle changed by the flow conditions inside the nozzle sac hole. In case that pump speed and injection quantity were low, the orifice located in the vertex of nozzle tip had a great deal of injection quantity compared with that of others. As the increment of multi-hole number, the injection duration and the mean injection pressure decrease. The mean and peak injection rates, however, increase. Actually, the mean flow coefficient(${C_d}_{(mean)}$) increases, too. The flow coefficient of the multi 8 hole was evaluated as Cd(mean)=0.74 and that is the maximum value among the examined conditions.

  • PDF