• Title/Summary/Keyword: Oriented Particles

Search Result 45, Processing Time 0.021 seconds

Microstructural observations of shear zones at cohesive soil-steel interfaces under large shear displacements

  • Mamen, Belgacem;Hammoud, Farid
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.275-282
    • /
    • 2021
  • Failure mechanism which can affect geotechnical infrastructures (shallow foundations, retaining walls, and piles) constitutes one of the most encountered problems during the design process. In this respect, the shear behavior of interfaces between grained soils and solid building materials, as well as those between cohesive soils should be investigated. Therefore, a range of ring shear tests with different cohesive soils and stainless-steel interfaces have been carried out through the Bromhead apparatus that allows simulating large displacements along a failure surface. The effects of steel rings roughness and soil type on the residual friction coefficient and the shear zone features (structure, thickness, and texture orientation angle) have been investigated using the Scanning Electron Microscopy. The obtained results indicate that the residual friction coefficient and the structural characteristics of the shear zone vary according to the surface roughness and the soil type. Scanning electron microscopy reveals that the particles inside the shear zone tend to be re-oriented. Also, the shear failure mechanism can be identified along with the interface, within the soil, or simultaneously at the interface and within the soil specimen.

Effect of Antibody Immobilization Method to Magnetic Micro Beads on its Immunobinding Characteristics (자성 미세입자에의 항체 고정화 방법이 면역결합반응에 미치는 영향)

  • Choi, Hyo Jin;Hwang, Sang Youn;Jang, Dae Ho;Cho, Hyung Min;Kang, Jung Hye;Seong, Gi Hun;Choo, Jae Bum;Lee, Eun Kyu
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.65-72
    • /
    • 2006
  • Recent technical advances in the biorecognition engineering and the microparticle fabrication may enable us to develop the single step purification using magnetic particle, because of its simplicity, efficacy, ease of automation, and process economics. In this study, we used commercial magnetic particles from Seradyn, Inc. (Indianapolis, USA). It was ca. 2.8 micron in diameter, consisted of polystyrene core and magnetite coating, and its surface had carboxyl groups. The model, capture protein was IgG and anti-IgG was used as the ligand molecule. We studied the different surfaces ('nude', ester-activated, and anti-IgG coated) for their biorecognition of IgG. At a high pH condition, we could reduce non-specific binding. Also anti-IgG immobilized magnetic particle could capture IgG more selectively. We attempted 'oriented immobilization' of anti-IgG, in which the polysaccharides moiety near the C-terminus was selectively oxidized and linked to the hydrazine-coated MP, to improve the efficacy of biorecognitive binding. Using this method, the IgG capturing ability was improved by ca. 2 fold. From the binary mixture of the IgG-insulin, IgG could be more selectively captured. In summary, the oriented immobilization of oxidized anti-IgG proved to be as effective as the streptavidin-biotin system and yet simpler and cost-effective. This immobilization method can find its applications in protein biochips and biotargeting.

Oxygen Permeation Characteristics of Nano-silica Hybrid Thin Films (나노 실리카 하이브리드 박막의 산소 투과 특성)

  • Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.174-181
    • /
    • 2007
  • In this study, $SiO_2/poly(ethylene-co-vinyl$ alcohol)(EVOH) hybrid coating materials with gas barrier property could be produced using sol-gel method. The biaxially oriented polypropylene (BOPP) substrate with surface pretreatment was coated with the prepared hybrid sols containing various inorganic silicate component by a spin coating method. Crystallization behavior of the hybrids was investigated in terms of analysis of X-ray diffraction and cooling thermogram from DSC experiment. From the morphological observation of the $SiO_2/EVOH$ hybrid gel, it was confirmed that there existed an optimum content of inorganic silicate precursor, Tetraethylorthosilicate (TEOS), to produce hybrid materials with dense microstructure, exhibiting uniformly dispersed silica particles with average size below 100 nm. When TEOS was added at below or above the optimum content, particle clusters with large domain were observed, resulting in phase separation. This morphological result was found to be in good agreement with that of oxygen permeability of the hybrid coated films. In the case of film coated with hybrid prepared from addition of 0.01 - 0.02mol of TEOS, a remarkable improvement in barrier property could be obtained, however, with the addition of TEOS more than 0.04 mol, the barrier property was dramatically reduced because of phase separation and micro-crack formation on the film surface.

Formation of Ti3SiC2 Interphase of SiC Fiber by Electrophoretic Deposition Method

  • Lee, Hyeon-Geun;Kim, Daejong;Jeong, Yeon Su;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.87-92
    • /
    • 2016
  • Due to its stability at high temperature and its layered structure, $Ti_3SiC_2$ MAX phase was considered to the interphase of $SiC_f/SiC$ composite. In this study, $Ti_3SiC_2$ MAX phase powder was deposited on SiC fiber via the electrophoretic deposition (EPD) method. The Zeta potential of the $Ti_3SiC_2$ suspension with and without polyethyleneimine as a dispersant was measured to determine the conditions of the EPD experiments. Using a suspension with 0.03 wt.% ball milled $Ti_3SiC_2$ powder and 0.3 wt.% PEI, $Ti_3SiC_2$ MAX phase was successfully coated on SiC fiber with an EPD voltage of 10 V for 2 h. Most of the coated $Ti_3SiC_2$ powders are composed of spherical particles. Part of the $Ti_3SiC_2$ powders that are platelet shaped are oriented parallel to the SiC fiber surface. From these results we expect that $Ti_3SiC_2$ can be applied to the interphase of $SiC_f/SiC$ composites.

A study on anisotropic characteristics of axial strengths in $\alpha$-quartz by using molecular dynamics simulation and uniaxial compression test (분자동력 학 시뮬레이션과 일축압축강도시험을 이용한 $\alpha$-quartz의 결정축에 따른 강도이방성 검토)

  • ;;市川康明;河村雄行
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.70-79
    • /
    • 2000
  • We carried out NPT-ensemble (constant-number of particles, pressure, and temperature) Molecular Dynamics (MD) simulations for measuring strength anisotropy under uniaxial compressive stress rotated to the crystallographic axes in $\alpha$-quartz. Uniaxial compressive strengths of a single quartz crystal were measured in directions of the a- and c-axis. Measured uniaxial strength of a single quartz crystal was higher in the direction parallel to the c-axis than that measured in the direction normal to the c-axis. However the reverse was found in calculated uniaxial strengths by MD simulation. The contradictive result of strengths was observed in both cases but was found to be different in origin. Strength anisotropy of defectless $\alpha$-quartz crystal in MD simulation is basically caused by structural difference of quartz. By contrast, anisotropy of measured strength in the uniaxial compression test is related to oriented micro-defects developed during crystal growth.

  • PDF

Wetness Index Estimate and Suggestion of the Criteria of the Rockfall Protective Barrier in Talus slope (테일러스 사면의 습윤지수 산정 및 낙석방호시설 설치 기준 제안)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Baek, Yong;Kim, Sung-Wook;Kim, In-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.592-599
    • /
    • 2004
  • Talus topography is that weathered rock clasts were accumulated dropping in steep slope to action of gravity. Rock fall talus is formed by the accumulation of rock debris falling as individual particles from a cliff. If the collapse is produced in talus slope. it will be possible the loss of manpower and country. Despite correct access about talus is required, domestic research was scientific access about talus short because of short resolution of aerophoto and difficulties of research about huge talus. In this Study, Our research team analgize the wetness index using the geomorphogical data. Lineament through wetness index is simillar with distribution of the talus. And, the aim of the present study is to review and compare fabric data derived from rock fall talus about orientation, distribution and morphology. These deposits tend to have approximately equal amounts of clasts oriented parallel and perpendicular to the dip direction of the slope. And, platy- shaped clasts dominate the proximal and intermediate parts of the talus, wheres blocky-shaped clasts is more common in the distal part. we carry out Rock Fall Simulation. And, We install criteria of the rockfall protective barrier using talus and geomorphological characteristics.

  • PDF

Magnetic Field Dependent Characteristics of Al-doped ZnO by High Power Impulse Magnetron Sputtering (HIPIMS) (자장 구조 변화에 따른 High Power Impulse Magnetron Sputtering (HIPIMS)에서 Al-doped ZnO 박막 증착 특성)

  • Park, Dong-Hee;Yang, Jeong-Do;Choi, Ji-Won;Son, Young-Jin;Choi, Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.629-635
    • /
    • 2010
  • Abstract In this study characteristics of Al-doped ZnO thin film by HIPIMS (High power impulse sputtering) are discussed. Deposition speed of HIPIMS with conventional balanced magnetic field is measured at about 3 nm/min, which is 30% of that of conventional RF sputtering process with the same working pressure. To generate additional magnetic flux and increase sputtering speed, electromagnetic coil is mounted at the back side of target. Under unbalanced magnetic flux from electromagnet with 1.5A coil current, deposition speed of AZO thin film is increased from 3 nm/min to 4.4 nm/min. This new value originates from the decline of particles near target surface due to the local magnetic flux going toward substrate from electromagnet. AZO film sputtered by HIPIMS process shows very smooth and dense film surface for which surface roughness is measured from 0.4 nm to 1 nm. There are no voids or defects in morphology of AZO films with varying of magnetic field. When coil current is increased from 0A to 1A, transmittance of AZO thin film decreases from 80% to 77%. Specific resistance is measured at about $2.9{\times}10-2\Omega{\cdot}cm$. AZO film shows C-axis oriented structure and its grain size is calculated at about 5.3 nm, which is lower than grain size in conventional sputtering.

Effects of Precipitate Element Addition on Microstructure and Magnetic Properties in Magnetostrictive Fe83Ga17 alloy

  • Li, Jiheng;Yuan, Chao;Zhang, Wenlan;Bao, Xiaoqian;Gao, Xuexu
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.12-19
    • /
    • 2016
  • The <100> oriented $Fe_{83}Ga_{17}$ alloys with various contents of NbC or B were prepared by directionally solidification method at the growth rate of $720mm{\cdot}h^{-1}$. With a small amount of precipitates, the columnar grains grew with cellular mode during directional solidification process, while like-dendrite mode of grains growth was observed in the alloys with higher contents of 0.5 at% due to the dragging effect of precipitates on the boundaries. The NbC precipitates disperse both inside grains and along the boundaries of $Fe_{83}Ga_{17}$ alloys with NbC addition, and the Fe2B secondary phase particles preferentially distribute along the grain boundaries in B-doped alloys. Precipitates could affect grain growth and improved the <100> orientation during directional solidification process. Small amount of precipitate element addition slightly increased the magnetostrictive strain, and a high value of 335 ppm under pre-stress of 15 MPa was achieved in the alloys with 0.1 at% NbC. Despite the fact that the effect on magnetic induction density of small amount of precipitates could be negligible, the coercivity markedly increased with addition of precipitate element for $Fe_{83}Ga_{17}$ alloy due to the retarded domain motion resulted by precipitates.

Development of a software framework for sequential data assimilation and its applications in Japan

  • Noh, Seong-Jin;Tachikawa, Yasuto;Shiiba, Michiharu;Kim, Sun-Min;Yorozu, Kazuaki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.39-39
    • /
    • 2012
  • Data assimilation techniques have received growing attention due to their capability to improve prediction in various areas. Despite of their potentials, applicable software frameworks to probabilistic approaches and data assimilation are still limited because the most of hydrologic modelling software are based on a deterministic approach. In this study, we developed a hydrological modelling framework for sequential data assimilation, namely MPI-OHyMoS. MPI-OHyMoS allows user to develop his/her own element models and to easily build a total simulation system model for hydrological simulations. Unlike process-based modelling framework, this software framework benefits from its object-oriented feature to flexibly represent hydrological processes without any change of the main library. In this software framework, sequential data assimilation based on the particle filters is available for any hydrologic models considering various sources of uncertainty originated from input forcing, parameters and observations. The particle filters are a Bayesian learning process in which the propagation of all uncertainties is carried out by a suitable selection of randomly generated particles without any assumptions about the nature of the distributions. In MPI-OHyMoS, ensemble simulations are parallelized, which can take advantage of high performance computing (HPC) system. We applied this software framework for several catchments in Japan using a distributed hydrologic model. Uncertainty of model parameters and radar rainfall estimates is assessed simultaneously in sequential data assimilation.

  • PDF

Gold Shell Nanocluster Networks in Designing Four-Branch (1×4) Y-Shape Optical Power Splitters

  • Ahmadivand, Arash;Golmohammadi, Saeed
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.274-282
    • /
    • 2014
  • In this study, closely spaced Au nanoparticles which are arranged in nanocluster (heptamer) configurations have been employed to design efficient plasmonic subwavelength devices to function at the telecommunication spectrum (${\lambda}$~1550 nm). Utilizing two kinds of nanoparticles, the optical properties of heptamer clusters composed of Au rod and shell particles that are oriented in triphenylene molecular fashion have been investigated numerically, and the cross-sectional profiles of the scattering and absorption of the optical power have been calculated based on a finite-difference time-domain (FDTD) method. Plasmon hybridization theory has been utilized as a theoretical approach to characterize the features and properties of the adjacent and mutual heptamer clusters. Using these given nanostructures, we designed a complex four-branch ($1{\times}4$) Y-shape splitter that is able to work at the near infrared region (NIR). This splitter divides and transmits the magnetic plasmon mode along the mutual heptamers arrays. Besides, as an important and crucial parameter, we studied the impact of arm spacing (offset distance) on the guiding and dividing of the magnetic plasmon resonance propagation and by calculating the ratio of transported power in both nanorod and nanoshell-based structures. Finally, we have presented the optimal structure, that is the four-branch Y-splitter based on shell heptamers which yields the power ratio of 23.9% at each branch, 4.4 ${\mu}m$ decaying length, and 1450 nm offset distance. These results pave the way toward the use of nanoparticles clusters in molecular fashions in designing various efficient devices that are able to be efficient at NIR.