• Title/Summary/Keyword: Organs at risk

Search Result 142, Processing Time 0.027 seconds

Dosimetric Analysis of Lung Stereotactic Body Radiotherapy Using Halcyon Linear Accelerator

  • Shinhaeng Cho;Ick Joon Cho;Yong Hyub Kim;Jea-Uk Jeong;Mee Sun Yoon;Taek-Keun Nam;Sung-Ja Ahn;Ju-Young Song
    • Progress in Medical Physics
    • /
    • v.34 no.4
    • /
    • pp.48-54
    • /
    • 2023
  • Purpose: In this study, the dosimetric characteristics of lung stereotactic body radiotherapy (SBRT) plans using the new Halcyon system were analyzed to assess its suitability. Methods: We compared the key dosimetric parameters calculated for the Halcyon SBRT plans with those of a conventional C-arm linear accelerator (LINAC) equipped with a high-definition multileaf collimator (HD-MLC)-Trilogy Tx. A total of 10 patients with non-small-cell lung cancer were selected, and all SBRT plans were generated using the RapidArc technique. Results: Trilogy Tx exhibited significant superiority over Halcyon in terms of target dose coverage (conformity index, homogeneity index, D0.1 cc, and D95%) and dose spillage (gradient). Trilogy Tx was more efficient than Halcyon in the lung SBRT beam delivery process in terms of the total number of monitor units, modulation factor, and beam-on time. However, it was feasible to achieve a dose distribution that met SBRT plan requirements using Halcyon, with no significant differences in satisfying organs at risk dose constraints between both plans. Conclusions: Results confirm that Halcyon is a viable alternative for performing lung SBRT in the absence of a LINAC equipped with HD-MLC. However, extra consideration should be taken in determining whether to use Halcyon when the planning target volume setting is enormous, as in the case of significant tumor motions.

USEFULNESS OF SIMPLE SHIELDING TECHNIQUE USING MULTILEAF COLLIMATOR IN BREAST RADIATION THERAPY

  • Lee, Kyu Chan;Lee, Seok Ho;Lee, Seung Heon;Sung, Kihoon;Ahn, So Hyun;Choi, Jinho;Dong, Kap Sang;Kim, Hyo Jin;Chun, Yong Seon;Park, Heung Kyu
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.4
    • /
    • pp.168-175
    • /
    • 2014
  • This study was designed to assess whether the conventional tangential technique, using a multileaf collimator (MLC), allows a reduced dose to the organs at risk (OAR) in breast radiation therapy. A total of forty right and left 20 for each breast cancer patients that underwent radiation therapy after breast conserving surgery were included in this study. For each patient, the planning target volume (PTV) and OAR (heart, left anterior descending artery (LAD), liver and lung) were defined and dose distribution were produced for conventional tangential beams using 6 MV photons. The treatment plans were made using the following two techniques for all patients. For the first plan (P1), MLC was designed to shield as much of OAR as possible without compromising the coverage of PTV. In the second plan (P2), the treatment plan was created without using MLC. Dose-volume histograms for OARs were calculated for all plans. For left breast cancer, the percentage of maximum dose ($D_{max%}$) and mean dose ($D_{mean%}$) of OARs (heart and LAD) were calculated, and for right breast cancer, the percentage of the mean dose ($D_{mean%}$) of the liver was calculated. The $D_{mean%}$ of the lung was calculated in all patients. The mean values of $D_{max%}$ of the heart ($86.9{\pm}19.5%$ range, 35.1-100.6%) in P1 were significantly lower than in P2 ($98.3{\pm}3.4%$ range, 91.7-105.2%) (p=0.001). The mean values of $D_{max%}$ of LAD ($78.4{\pm}22.5%$ range, 26.5-99.7%) in P1 was significantly lower than in P2 ($93.3{\pm}8.1%$ range, 67.9-102.1%) (p<0.001). In P1, the mean values of $D_{mean%}$ of the liver ($4.8{\pm}2.0%$) were significantly lower than in P2 ($6.2{\pm}2.5%$) (p<0.001). The mean values of $D_{mean%}$ of the lung were significantly lower in P1 ($9.3{\pm}2.3%$) than in P2 ($9.7{\pm}2.4%$) (p<0.001). P1, by using MLC, allows a significantly reduced dose to OAR compared with P2. We can suggest that it is reasonable to routinely use MLC in the conventional tangential technique for breast radiation therapy considering the primary tumor location.

Correlation of the Berg Balance Scale and Smart Balance Master System for Chronic Hemiparetic Stroke (만성 편마비 뇌졸중 환자의 버그균형척도(Berg Balance Scale)와 Smart Balance Master System의 상관성)

  • Song, Chiang-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5741-5747
    • /
    • 2011
  • The purpose of this study was to find correlation between the Berg Balance Scale which is most commonly used and the equilibrium scores from Smart Balance Master System which is used for the test of the balance ability for the patients with chronic hemiparetic stroke to predict their falling risk though examining the postural control. Twenty-two subjects who had first stroke participated in this study. Participants were measured the Berg Balance Scale and the Smart Balance Master System. The study found that there was a significant correlation between the Berg Balance Scale and the equilibrium scores from Smart Balance Master System. And there was no significant correlation at all "eye-closed and sway of surfaces" in the 6 conditions of Smart Balance Master System and there was a significant correlation with over median in the other 5 conditions. The study was uncovered that there was no meaningful correlation between the Berg Balance Scale and "eye-closed and sway of surfaces" because chronic hemiparetic stroke patients heavily relied on their vision to maintain their balance ability and the Berg Balance Scale did not properly exam it. Thus to predict their falling risk in clinical practice for the patients with chronic hemiparetic stroke, it would be more efficient ways for us to consider all the effects of sensory organs with more than one clinical evaluation method.

Evaluating efficiency of Vertical MLC VMAT plan for naso-pharyngeal carcinoma (비인두암 Vertical MLC VMAT plan 유용성 평가)

  • Chae, Seung Hoon;Son, Sang Jun;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.127-135
    • /
    • 2021
  • Purpose : The purpose of the study is to evaluate the efficiency of Vertical MLC VMAT plan(VMV plan) Using 273° and 350° collimator angle compare to Complemental MLC VMAT plan(CMV plan) using 20° and 340° collimator angle for nasopharyngeal carcinoma. Materials & Methods : Thirty patients treated for nasopharyngeal carcinoma with the VMAT technique were retrospectively selected. Those cases were planned by Eclipse, PO and AcurosXB Algorithm with two 6MV 360° arcs and Each arc has 273° and 350° of collimator angle. The Complemental MLC VMAT plans are based on existing treatment plans. Those plans have the same parameters of existing treatment plans but collimator angle. For dosimetric evaluation, the dose-volumetric(DV) parameters of the planning target volume (PTV) and organs at risk (OARs) were calculated for all VMAT plans. MCSv(Modulation complexity score of VMAT), MU and treatment time were also compared. In addition, Pearson's correlation analysis was performed to confirm whether there was a correlation between the difference in the MCSv and the difference in each evaluation index of the two treatment plans. Result : In the case of PTV evaluation index, the CI of PTV_67.5 was improved by 3.76% in the VMV Plan, then for OAR, the dose reduction effect of the spinal cord (-14.05%) and brain stem (-9.34%) was remarkable. In addition, the parotid glands (left parotid : -5.38%, right : -5.97%) and visual organs (left optic nerve: -4.88%, right optic nerve: -5.80%, optic chiasm : -6.12%, left lens: -6.12%, right lens: -5.26%), auditory organs (left: -11.74%, right: -12.31%) and thyroid gland (-2.02%) were also confirmed. The difference in MCSv of the two treatment plans showed a significant negative (-) correlation with the difference in CI (r=-0.55) of PTV_54 and the difference in CI (r=-0.43) of PTV_48. Spinal cord (r=0.40), brain stem (r=0.34), and both salivary glands (left: r=0.36, right: r=0.37) showed a positive (+) correlation. (For all the values, p<.05) Conclusion : Compared to the CMV plan, the VMV plan is considered to be helpful in improving the quality of the treatment plan by allowing the MLC to be modulated more efficiently

Measurement of Dose outside a 6 MV Field Edge Using Optically Stimulated Luminescent Nano Dot Dosimeters (광자극형광나노닷선량계를 사용한 6 MV 조사야 가장자리 바깥 선량 측정)

  • Kim, Jongeon;Kim, Wontae
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.7
    • /
    • pp.449-454
    • /
    • 2014
  • The purpose of this study is(was) to investigate the shielding ratio of 1 mmPb and the off axis ratio outside the field edge at depth of 1 cm from a phantom surface for 6 MV photon beam. A dose of 180 cGy was delivered to a depth of 10 cm for a $10{\times}10cm^2$ and $15{\times}15cm^2$ field in the SAD technique. The off axis ratio was calculated by measuring the dose of optically stimulated luminescent nanoDot dosimeters(OSLnDs) positioned at 2, 4 and 6 cm from the field edge, and the center axis of field. And the shielding ratio of 1 mmPb was calculated by measuring the dose of OSLnDs positioned at 2, 4 and 6 cm from the field edge.. As a result, for a $10{\times}10cm^2$ and $15{\times}15cm^2$ field, the off axis ratios were acquired 0.008-0.023 and 0.011-0.028, respectively. Also the shielding ratios of 1 mmPb were acquired 0.868-0.888 and 0.807-0.842, respectively. These results provide data to protect organs at risk outside the radiation treatment field.

Shielding for Critical Organs and Radiation Exposure Dose Distribution in Patients with High Energy Radiotherapy (고 에너지 방사선치료에서 환자의 피폭선량 분포와 생식선의 차폐)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • High energy photon beams from medical linear accelerators produce large scattered radiation by various components of the treatment head, collimator and walls or objects in the treatment room including the patient. These scattered radiation do not provide therapeutic dose and are considered a hazard from the radiation safety perspective. Scattered dose of therapeutic high energy radiation beams are contributed significant unwanted dose to the patient. ICRP take the position that a dose of 500mGy may cause abortion at any stage of pregnancy and that radiation detriment to the fetus includes risk of mental retardation with a possible threshold in the dose response relationship around 100 mGy for the gestational period. The ICRP principle of as low as reasonably achievable (ALARA) was recommended for protection of occupation upon the linear no-threshold dose response hypothesis for cancer induction. We suggest this ALARA principle be applied to the fetus and testicle in therapeutic treatment. Radiation dose outside a photon treatment filed is mostly due to scattered photons. This scattered dose is a function of the distance from the beam edge, treatment geometry, primary photon energy, and depth in the patient. The need for effective shielding of the fetus and testicle is reinforced when young patients ate treated with external beam radiation therapy and then shielding designed to reduce the scattered photon dose to normal organs have to considered. Irradiation was performed in phantom using high energy photon beams produced by a Varian 2100C/D medical linear accelerator (Varian Oncology Systems, Palo Alto, CA) located at the Yonsei Cancer Center. The composite phantom used was comprised of a commercially available anthropomorphic Rando phantom (Phantom Laboratory Inc., Salem, YN) and a rectangular solid polystyrene phantom of dimensions $30cm{\times}30cm{\times}20cm$. the anthropomorphic Rando phantom represents an average man made from tissue equivalent materials that is transected into transverse 36 slices of 2.5cm thickness. Photon dose was measured using a Capintec PR-06C ionization chamber with Capintec 192 electrometer (Capintec Inc., Ramsey, NJ), TLD( VICTOREEN 5000. LiF) and film dosimetry V-Omat, Kodak). In case of fetus, the dosimeter was placed at a depth of loom in this phantom at 100cm source to axis distance and located centrally 15cm from the inferior edge of the $30cm{\times}30cm^2$ x-ray beam irradiating the Rando phantom chest wall. A acryl bridge of size $40cm{\times}40cm^2$ and a clear space of about 20 cm was fabricated and placed on top of the rectangular polystyrene phantom representing the abdomen of the patient. The leaf pot for testicle shielding was made as various shape, sizes, thickness and supporting stand. The scattered photon with and without shielding were measured at the representative position of the fetus and testicle. Measurement of radiation scattered dose outside fields and critical organs, like fetus position and testicle region, from chest or pelvic irradiation by large fie]d of high energy radiation beam was performed using an ionization chamber and film dosimetry. The scattered doses outside field were measured 5 - 10% of maximum doses in fields and exponentially decrease from field margins. The scattered photon dose received the fetus and testicle from thorax field irradiation was measured about 1 mGy/Gy of photon treatment dose. Shielding construction to reduce this scattered dose was investigated using lead sheet and blocks. Lead pot shield for testicle reduced the scatter dose under 10 mGy when photon beam of 60 Gy was irradiated in abdomen region. The scattered photon dose is reduced when the lead shield was used while the no significant reduction of scattered photon dose was observed and 2-3 mm lead sheets refuted the skin dose under 80% and almost electron contamination. The results indicate that it was possible to improve shielding to reduce scattered photon for fetus and testicle when a young patients were treated with a high energy photon beam.

Comparative Evaluation of Two-dimensional Radiography and Three Dimensional Computed Tomography Based Dose-volume Parameters for High-dose-rate Intracavitary Brachytherapy of Cervical Cancer: A Prospective Study

  • Madan, Renu;Pathy, Sushmita;Subramani, Vellaiyan;Sharma, Seema;Mohanti, Bidhu Kalyan;Chander, Subhash;Thulkar, Sanjay;Kumar, Lalit;Dadhwal, Vatsla
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4717-4721
    • /
    • 2014
  • Background: Dosimetric comparison of two dimensional (2D) radiography and three-dimensional computed tomography (3D-CT) based dose distributions with high-dose-rate (HDR) intracavitry radiotherapy (ICRT) for carcinoma cervix, in terms of target coverage and doses to bladder and rectum. Materials and Methods: Sixty four sessions of HDR ICRT were performed in 22 patients. External beam radiotherapy to pelvis at a dose of 50 Gray in 27 fractions followed by HDR ICRT, 21 Grays to point A in 3 sessions, one week apart was planned. All patients underwent 2D-orthogonal and 3D-CT simulation for each session. Treatment plans were generated using 2D-orthogonal images and dose prescription was made at point A. 3D plans were generated using 3D-CT images after delineating target volume and organs at risk. Comparative evaluation of 2D and 3D treatment planning was made for each session in terms of target coverage (dose received by 90%, 95% and 100% of the target volume: D90, D95 and D100 respectively) and doses to bladder and rectum: ICRU-38 bladder and rectum point dose in 2D planning and dose to 0.1cc, 1cc, 2cc, 5cc, and 10cc of bladder and rectum in 3D planning. Results: Mean doses received by 100% and 90% of the target volume were $4.24{\pm}0.63$ and $4.9{\pm}0.56$ Gy respectively. Doses received by 0.1cc, 1cc and 2cc volume of bladder were $2.88{\pm}0.72$, $2.5{\pm}0.65$ and $2.2{\pm}0.57$ times more than the ICRU bladder reference point. Similarly, doses received by 0.1cc, 1cc and 2cc of rectum were $1.80{\pm}0.5$, $1.48{\pm}0.41$ and $1.35{\pm}0.37$ times higher than ICRU rectal reference point. Conclusions: Dosimetric comparative evaluation of 2D and 3D CT based treatment planning for the same brachytherapy session demonstrates underestimation of OAR doses and overestimation of target coverage in 2D treatment planning.

Planning and Dosimetric Study of Volumetric Modulated Arc Based Hypofractionated Stereotactic Radiotherapy for Acoustic Schwannoma - 6MV Flattening Filter Free Photon Beam

  • Swamy, Shanmugam Thirumalai;Radha, Chandrasekaran Anu;Arun, Gandhi;Kathirvel, Murugesan;Subramanian, Sai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.5019-5024
    • /
    • 2015
  • Background: The purpose of this study was to assess the dosimetric and clinical feasibility of volumetric modulated arc based hypofractionated stereotactic radiotherapy (RapidArc) treatment for large acoustic schwannoma (AS >10cc). Materials and Methods: Ten AS patients were immobilized using BrainLab mask. They were subject to multimodality imaging (magnetic resonance and computed tomography) to contour target and organs at risk (brainstem and cochlea). Volumetric modulated arc therapy (VMAT) based stereotactic plans were optimized in Eclipse (V11) treatment planning system (TPS) using progressive resolution optimizer-III and final dose calculations were performed using analytical anisotropic algorithm with 1.5 mm grid resolution. All AS presented in this study were treated with VMAT based HSRT to a total dose of 25Gy in 5 fractions (5fractions/week). VMAT plan contains 2-4 non-coplanar arcs. Treatment planning was performed to achieve at least 99% of PTV volume (D99) receives 100% of prescription dose (25Gy), while dose to OAR's were kept below the tolerance limits. Dose-volume histograms (DVH) were analyzed to assess plan quality. Treatments were delivered using upgraded 6 MV un-flattened photon beam (FFF) from Clinac-iX machine. Extensive pretreatment quality assurance measurements were carried out to report on quality of delivery. Point dosimetry was performed using three different detectors, which includes CC13 ion-chamber, Exradin A14 ion-chamber and Exradin W1 plastic scintillator detector (PSD) which have measuring volume of $0.13cm^3$, $0.009cm^3$ and $0.002cm^3$ respectively. Results: Average PTV volume of AS was 11.3cc (${\pm}4.8$), and located in eloquent areas. VMAT plans provided complete PTV coverage with average conformity index of 1.06 (${\pm}0.05$). OAR's dose were kept below tolerance limit recommend by American Association of Physicist in Medicine task group-101(brainstem $V_{0.5cc}$ < 23Gy, cochlea maximum < 25Gy and Optic pathway <25Gy). PSD resulted in superior dosimetric accuracy compared with other two detectors (p=0.021 for PSD.

Effect of Low Magnetic Field on Dose Distribution in the SABR Plans for Liver Cancer

  • Son, Jaeman;Chun, Minsoo;An, Hyun Joon;Kang, Seong-Hee;Chie, Eui Kyu;Yoon, Jeongmin;Choi, Chang Heon;Park, Jong Min;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.29 no.2
    • /
    • pp.47-52
    • /
    • 2018
  • To investigate the effect of low magnetic field on dose distribution in SABR plans for liver cancer, we calculated and evaluated the dose distribution to each organ with and without magnetic fields. Ten patients received a 50 Gy dose in five fractions using the $ViewRay^{(R)}$ treatment planning system. For planning target volume (PTV), the results were analyzed in the point minimum ($D_{min}$), maximum ($D_{max}$), mean dose ($D_{mean}$) and volume receiving at least 90% ($V_{90%}$), 95% ($V_{95%}$), and 100% ($V_{100%}$) of the prescription dose, respectively. For organs at risk (OARs), the duodenum and stomach were analyzed with $D_{0.5cc}$ and $D_{2cc}$, and the remained liver except for PTV was analyzed with $D_{mean}$, $D_{max}$, and $D_{min}$. Both inner and outer shells were analyzed with the point $D_{min}$, $D_{max}$, and $D_{mean}$, respectively. For PTV, the maximum change in volume due to the presence or absence of the low magnetic field showed a percentage difference of up to $0.67{\pm}0.60%$. In OAR analysis, there is no significant difference for the magnetic field. In both shell structure analyses, although there are no major changes in dose distribution, the largest value of deviation for $D_{max}$ in the outer shell is $2.12{\pm}2.67Gy$. The effect of low magnetic field on dose distribution by a Co-60 beam was not significantly observed within the body, but the dose deposition was only appreciable outside the body.

First Clinical Experience about RapidArc Treatment with Prostate Cancer in Ajou University Hospital (아주대학교병원에서의 전립선암에 대한 래피드아크 치료)

  • Park, Hae-Jin;Kim, Mi-Hwa;Chun, Mi-Son;Oh, Young-Teak;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.183-191
    • /
    • 2010
  • In this study, the patient with localized prostate cancer who had previously been treated at Ajou University Hospital was randomly selected since March, 2009. we performed IMRT and 2RA plans and the same dose objectives were used for CTVs, PTVs, rectum, bladder, and femoral head of the respective plans. Arc optimizations and dose calculations were performed using Eclipse versions 8.6. In this paper, we evaluated the performance of IMRT and RA plans to investigate the clinical effect of RA for prostate cancer case. In our comparison of treatment techniques, RA was found to be superior to IMRT being better dose conformity of target volume. As for the rectum and bladder, RA was better than IMRT at decreasing the volume irradiated. RA has the ability to avoid critical organs selectively through applied same dose constraints while maximally treating the target dose. Therefore, this result suggests that there should be less rectal toxicity with RA compared with IMRT, with no compromise in tumor margin. These findings, which show more favorable rectal, bladder, and femoral head DVHs with RA, imply that should not result in excess risk of toxicity when this technique is used. Many experiences with RA have shown not only dosimetric advantage, but also improved clinical toxicity when comparing with IMRT. The main drawbacks of RA are the more complex and time-consuming treatment planning process and the need for more exact physics quality assurance (QA).