• Title/Summary/Keyword: Organoclay

Search Result 80, Processing Time 0.028 seconds

Gentamicin/CTMA/Montmorillonite as Slow-Released Antibacterial Agent

  • Fatimah, Is;Hidayat, Habibi;Purwiandono, Gani;Husein, Saddam;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.367-374
    • /
    • 2021
  • This paper presents the characteristics of gentamicin-loaded into cetyl trimethyl ammonium intercalated montmorillonite (GtM/CTMA/Mt) as a hybrid composite for a slow-released antibacterial delivery systems. The work describes the successful immobilization of gentamicin into the interlayers of surfactant-modified montmorillonite. Physicochemical characterization of the material is carried out by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. The kinetics of the gentamicin release is investigated by in vitro study and analyzed based on UV-Vis spectrometry. In addition, antibacterial study is performed towards Klebsiella pneumoniae Staphylococcus aureus, Escherichia coli, and Streptococcus pyogenes. The results show that the gentamicin loading into CTMA/Mt increases the effectiveness of the antibacterial activity, as shown by the higher inhibition zone for all tested bacteria, compared to gentamicin as a positive control. The kinetics study suggests that the gentamicin release obeys the modified Korsmeyer-Peppas model. The physicochemical study and activity test demonstrate the feasibility of the GtM/CTMA/Mt for practical applications.

Synthesis and Characterization of High Impact Polystyrene/Organically Modified Layered Silicate Nanocomposites (내충격성 폴리스티렌과 유기화 층상 실리케이트 나노복합체의 합성 및 특성)

  • 김관영;임효진;박상민;이성재
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.377-384
    • /
    • 2003
  • High impact polystyrene/organically modified layered silicate (HIPS/OLS) nanocomposites by in situ polymerization were synthesized to investigate the effect of clay on the particle size and properties of rubber. In the OLS, the montmorillonite having benzyl group showed best dispersion in polystyrene phase. With the addition of clay, the intercalated peak from XRB was confirmed, but the peak gradually shifted to lower angle as rubber concentration increased. Thus, it is speculated that the organoclay disperses better in rubber phase than in polystyrene phase. The average rubber particle size increased and the particle size distribution widened as the amount of clay increased, which may be caused by the increase of the viscosity ratio of rubber to polystyrene phases and the unstable dispersion. The materials having clay showed improved thermal properties from thermogravimetric analysis. Rheological properties such as complex viscosity and storage modulus increased as the amount of clay increased.

Effect of pH on the sorption kinetics of chlorophenols onto HDTMA-montmorillonite (염화페놀류 화합물의 HDTMA-montmorillonite에 대한 수착 동력학에 미치는 ph의 영향)

  • Mun Yong, Gwak;Dong Ik, Song
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.186-191
    • /
    • 2004
  • Sorption kinetics of 2-chlorophenol(2-ChP), 2,4-dichlorophenol(2,4-DChP) and 2,4,5-trichlorophenol (2,4,5-TChP), onto montmorillonite modified with hexadecyltrimethyl ammonium cations(HDTMA-mont) were investigated. One-site mass transfer model(OSMTM) and two compartment first-order kinetic model(TCFOKM) were used to analyze kinetics. As expected from the number of model parameters involved, the three-parameter TCFOKM was better than the two-parameter OSMTM in describing sorption and desorption kinetics of chlorophenols in HDTMA-mont. For all chlorophenols, the results of OSMTM analysis indicate that the predominant deprotonated speciation(at pH 9.15) exhibited higher mass transfer coefficient( $k_{s}$ ) than the protonated speciation(at pH 4.85). This is because the deprotonated speciation has stronger hydrophobic interaction than protonated speciation. Most sorption completes in three hours. The fraction of the fast sorption and the first-order sorption rate constants for the fast and slow compartments in TCFOKM were determined by fitting experimental data to the TCFOKM. The results of kinetics reveal that the fraction of the fast sorption( $f_1$) and the sorption rate constants in the fast compartments( $k_1$) were in the order 2,4,5-TChP > 2,4-DChP > 2-ChP, which agrees with the magnitude of the $K_{ow}$ . The first-order sorption rate constants in the fast compartment(10$^{0.8}$ - 10$^{1.22}$ h $r^{-1}$ ) were much larger than those in the slow compartment(10$^{-1}$.74/ - 10$^{-2}$.622/ h $r^{-1}$ ).> ).).

  • PDF

Organobentonite as a dual sorbent for Chlombenzene and Lead (클로로벤젠과 납의 동시 제거를 위한 흡착제로서의 유기 벤토나이트에 관한 연구)

  • 이정주;박재우;김일규
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.41-50
    • /
    • 2001
  • The use of clay has been the favored method of reducing or eliminating hazardous contaminants in the leachate from landfills. But, neither natural clays nor organoclays modified with surfactants are able to effectively sorb both heavy metals and organic contaminants. Therefore, the objective of this study is to determine the optimal amount of surfactant added on the clay mineral to effectively remove both of them. For this purpose, Na-Bentonite as the natural clay, and hexadecyltrimethylammonium (HDTMA) as the cationic surfactant were used, Chlorobenzene and lead ($Pb^{2-}$) were selected as representative contaminants. Experimental result showed that chlorobenzene sorption increased with increasing HDTMA to bentonite, ratios. On the contrary, the removal rate of lead decreased as the amount of HDTMA increased. The removal of chlorobenzene was influenced by the amount of HDTMA added to the bentonites rather than initial concentration of chlorobenzene, but the removal of lead was much more influenced by the initial concentration of lead. The adsorption of lead was not affected by chlorobenzene, and vice versa. The competitive sorption between the heavy metal and the organic contaminant was not present.

  • PDF

Treeing Phenomena of Epoxy-Layered Silicate Nanocomposites (Epoxy-Layered Silicate Nanocomposites Treeing 현상에 관한 연구)

  • Park, Jae-Jun;Cho, Dae-Ryng;Cho, Hog-Sok;Kim, Kyung-Tae;Hwang, Byung-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.371-372
    • /
    • 2008
  • 본 논문은 새롭게 초음파 분산기법을 이용하여 제조된 나노콤포지트 와 원형에폭시 수지에 대한 전기적 특성인 트리현상의 여러특성을 연구하였다. 나노필러인 Layered Silicate Particles가 에폭시수지 중에 Power Ultrasonic으로 분산된 나노콤포지트를 제조하였다. 충진된 혼합물에서 나노입자의 영향을 조사하기위해 열적, 구조적 특성을 연구하였고, 장시간 절연파괴 특성을 조사하기위해 침대평판 전극으로 원형에폭시수지와 나노콤포지트와 비교 측정하였다. 연구는 에폭시원형수지에 대한 인가전압레벌(교류 10, 15, 20kV)의 변화와 온도변화에 대한 (30,90,$130^{\circ}C$)의 트리특성을 연구하였다. 모든 전압레벨에서는 일정전압까지 1kV/s 로 승압 후 일정하게 인가되었고, 파괴에 이를 때까지 측정한 결과 10kV, 15Kv, 20KV의 경우 1042,75,488분후에 파괴에 이르렀다. 그러나 트리진행속도는 인가전압이 높을수록 빠르게 진행하였다. 온도 변화에 대한 트리특성으로서 15kV인가 후 파괴에 이르는 시간은 30,90,$130^{\circ}C$의 경우 75.3, 970, 226분으로 $90^{\circ}C$의 경우 절연성능이 가장 우수하였고, 트리진전속도는 $30^{\circ}C,130^{\circ}C,90^{\circ}C$ 순으로 나타났다. 이는 트리진전으로 파괴에 이르는 시간과 속도는 트리형태에 지배적으로 영향을 맡고 있음을 알 수 있었다. 또한 나노콤포지트 트리의 경우 15kV인가시 10902에 파괴에 이르렀고, 트리진전속도는 0.000729mm/min으로 원형에 비하여 53.36배의 트리진전시간이 느리고, 파괴시간은 145배 오래 견디는 절연내력을 측정할 수 있었다.

  • PDF

Effects of Organoclay on the Thermal Insulating Properties of Rigid Polyurethane Foams Blown by Environmentally Friendly Blowing Agents

  • Kim, Youn-Hee;Choi, Seok-Jin;Kim, Ji-Mun;Han, Mi-Sun;Kim, Woo-Nyon;Bang, Kyu-Tae
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.676-681
    • /
    • 2007
  • A process designed to synthesize rigid polyurethane foam (PUF) with insulative properties via the modulation of PUF cell size via the addition of clay and the application of ultrasound was assessed. The blowing agents utilized in this study include water, cyclopentane, and HFC-365mfc, all of which are known to be environmentally-friendly blowing agents. The rigid PUFs were prepared from polymeric 4,4'-diphenylmethane diisocyanate (PMDI) and polyether polyol with a density of $50kg/m^3$. In addition, rigid PUFs/clay nanocomposites were synthesized with clay modified by PMDI with and without the application of ultrasound. The PUF generated using water as a blowing agent evidenced the highest tensile strength. The tensile strength of the PUF/nanocomposites was higher than that of the neat PUF and the strength was even higher with the application of ultrasound. The cell size of the PUF/clay nanocomposites was less than that of the neat PUF, regardless of the type of blowing agent utilized. It appears that the higher tensile strength and lower cell size of the PUF/clay nanocomposites may be attributable to the uniform dispersion of the clay via ultrasonic agitation. The thermal conductivity of the PUF/clay nanocomposites generated with HCFC-141b evidenced the lowest value when PUF/clay nanocomposites were compared with other blowing agents, including HFC-365mfc, cyclopentane, and water. Ultrasound has also proven effective with regard to the reduction of the thermal conductivity of the PUF/clay nanocomposites with any of the blowing agents employed in this study. It has also been suggested that the uniformly dispersed clay particles in the PUF matrix function as diffusion barriers, which prevent the amelioration of the thermal insulation property.

Preparation and Characterization of Rubber/Clay Nanocomposite Using Skim Natural Rubber Latex (스킴천연고무 라텍스를 이용한 고무/점토 나노복합체의 제조 및 특성)

  • Alex, R.;Kim, M.J.;Lee, Y.S.;Nah, C.
    • Elastomers and Composites
    • /
    • v.41 no.4
    • /
    • pp.252-259
    • /
    • 2006
  • A new route for making rubber/clay nanocomposites was suggested based on skim natural rubber latex (SNRL), which is a protein rich by-product obtained during the centrifugal concentration of natural rubber (NR) latex. NR/acrylonitrile butadiene rubber (NBR) based nanocomposites were prepared from SNRL and NBR latex of 26 % acrylonitrile content by blending of aqueous dispersion of organoclay (OC) followed by coagulation, drying, mill mixing and vulcanization. X-ray diffraction(XRD) studies revealed that NR/NBR blend nanocomposites exhibited a highly intercalated and exfoliated structure, especially for NBR-rich blends. Dynamic mechanical studies showed that more compatible behavior was observed for NBR-rich blends. The 25/75 NR/NBR blend nanocomposite showed the best mechanical properties.

Organically Modified Vermiculite-Poly(Ethylene Terephthalate) Nanocomposites (유기물로 개질한 나노점토-폴리(에틸렌 테레프탈레이트) 복합재료의 기계적 특성)

  • Hai Anh Thi Le;Yong Tae Park
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.275-280
    • /
    • 2023
  • Because polymer-based composites are lightweight and have excellent properties, their demand is growing rapidly as a way to fulfill properties that are difficult to achieve with a single material. As a result, there has been a lot of research on polymer nanocomposites, which are made by dispersing particles with a size of 1-100 nm in a polymer matrix. In addition, many nanocomposites using thermoplastic resins as matrix materials are being studied. In this study, poly(ethylene terephthalate) (PET)-based nanocomposites containing organic nanoclays modified with cetyltrimethylammonium bromide (CTAB) as interlayer materials were prepared. Among various nanoclays, vermiculite (VMT) has been studied to increase the mechanical and thermal properties of polymeric materials due to its low cost, abundant reserves and unique properties. However, the strong interlayer bonding of VMT has limited its utilization due to its poor exfoliation and dispersion performance within polymer matrices. In this study, the mechanical properties of the VMT content were confirmed by tensile tests, the dispersion of VMT particles in the PET matrix was evaluated by TEM cross-sectional images, and the nitrogen gas barrier properties were evaluated.

Rheology and Morphology of PP/ionomer/clay Nancomposites Depending on Selective Dispersion of Organoclays (유기클레이의 선택적 분산에 의한 폴리프로필렌/아이오노머/클레이 나노복합체의 유변학 및 형태학적 특성 연구)

  • Kim, Doohyun;Ock, Hyun Geun;Ahn, Kyung Hyun;Lee, Seung Jong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.709-716
    • /
    • 2015
  • In this study, structural developments of polypropylene / ionomer / clay ternary composites were investigated depending on the dispersion and localization of clay. The changes in physical properties were observed adding organoclays 1~10wt% to 90% polypropylene and 10% ionomer blends. The organoclays were localized inside of the dispersed phase under the composition of 3wt%, however, over that composition, clay particles formed stiff network structure in the dispersed phase and additional clays were localized at the interface between two phases. According to the developments of microstructure, the interaction of ternary composites changed from polypropylene-ionomer to polypropylene-ionomer and ionomer-clay which affected rheological properties. The storage modulus (G') of the composites was similar to the blends when clays were localized inside of dispersed phase but increased when clays were localized at interface. Also, the fractured morphology of the composites showed phase boundary and growing radius of dispersed phase depending on addition of fillers when clays were found inside. However, when fillers found at the interface between blends, the radius of the dispersed phase decreased and compatibilized morphology were observed. The interfacial interaction of the ternary composite was quantified depending on the structural development of dispersed phase and localization of clay particles by the rheological properties. The interaction of composites at solid state which was measured through peel adhesion strength increased by growth of interfacial interaction of each component. Furthermore, the crystallinity of the composites was decreased when the clay particles were localized at the interface.

Natural Rubber-Clay Nanocomposites by Latex Method : Morphology and Mechanical Properties (라텍스법에 의한 천연고무-클레이 나노 복합재료: 모폴로지와 기계적 물성)

  • Kim, W.H.;Kang, J.H.;Kang, B.S.;Cho, U.R.
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.27-39
    • /
    • 2006
  • In this study, modified DA-MMT filled NR/DA-MMT nanocomposites were manufactured by a latex method and a compounding method. Cure characteristics and mechanical properties of the Cloisite 15A, carbon black, Na-MMT filled NR compounds and the DA-MMT filled NR compound by a latex method were also evaluated. The filler content of all compounds was 10phr except the carbon black filled compound. Degree of intercalation and dispersion was characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). According to the XRD diffraction pattern and TEM analysis, extensive intercalation and homogeneous dispersion of the clay were obtained after the two-roll milling. Although the layer distance was increased, some parts of DA-MMT showed the layer distance of Na-MMT after vulcanization. DA-MMT filled NR compounds showed the highest ODR torques, tensile strength, modulus, and tear energy. The NR/DA-MMT nanocomposite (by a latex method) compared with a NR/DA-MMT nanocomposite (by a compounding method) was found that the improvement of the mechanical properties was mainly due to the degree of dispersion of the clay.