DOI QR코드

DOI QR Code

Gentamicin/CTMA/Montmorillonite as Slow-Released Antibacterial Agent

  • Fatimah, Is (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII) ;
  • Hidayat, Habibi (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII) ;
  • Purwiandono, Gani (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII) ;
  • Husein, Saddam (Laboratory of Materials for Energy and Environemnt, Department of Chemistry, Universitas Islam Indonesia, Kampus Terpadu UII) ;
  • Oh, Won-Chun (Department of Advanced Materials Science and Engineering, Hanseo University)
  • Received : 2021.04.21
  • Accepted : 2021.06.08
  • Published : 2021.06.27

Abstract

This paper presents the characteristics of gentamicin-loaded into cetyl trimethyl ammonium intercalated montmorillonite (GtM/CTMA/Mt) as a hybrid composite for a slow-released antibacterial delivery systems. The work describes the successful immobilization of gentamicin into the interlayers of surfactant-modified montmorillonite. Physicochemical characterization of the material is carried out by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. The kinetics of the gentamicin release is investigated by in vitro study and analyzed based on UV-Vis spectrometry. In addition, antibacterial study is performed towards Klebsiella pneumoniae Staphylococcus aureus, Escherichia coli, and Streptococcus pyogenes. The results show that the gentamicin loading into CTMA/Mt increases the effectiveness of the antibacterial activity, as shown by the higher inhibition zone for all tested bacteria, compared to gentamicin as a positive control. The kinetics study suggests that the gentamicin release obeys the modified Korsmeyer-Peppas model. The physicochemical study and activity test demonstrate the feasibility of the GtM/CTMA/Mt for practical applications.

Keywords

References

  1. P. Gao, X. Nie, M. Zou, Y. Shi and G. Cheng, J. Antibiot., 64, 625 (2011). https://doi.org/10.1038/ja.2011.58
  2. Y. He, Z. Wu, L. Tu, Y. Han, G. Zhang and C. Li, Appl. Clay Sci., 109-110, 68 (2015). https://doi.org/10.1016/j.clay.2015.02.001
  3. H. Bujdakova, V. Bujdakova, H. Majekova-Koscova, B. Gaalova, V. Bizovska, P. Bohac and J. Bujdak, Appl. Clay Sci., 158, 21 (2018). https://doi.org/10.1016/j.clay.2018.03.010
  4. M. Anggraini, A. Kurniawan, L. K. Ong, M. A. Martin, J. C. Liu, F. E. Soetaredjo, N. Indraswati and S. Ismadji, RSC Adv., 4, 16298 (2014). https://doi.org/10.1039/C4RA00328D
  5. T. Saitoh and T. Shibayama, J. Hazard. Mater., 317, 677 (2016). https://doi.org/10.1016/j.jhazmat.2016.06.003
  6. P. Herrera, R. C. Burghardt and T. D. Phillips, Vet. Microbiol., 74, 259 (2000). https://doi.org/10.1016/S0378-1135(00)00157-7
  7. M. R. Virto, P. Frutos, S. Torrado and G. Frutos, Biomaterials, 24, 79 (2003). https://doi.org/10.1016/S0142-9612(02)00254-5
  8. S. Perni, K. Martini-Gilching and P. Prokopovich, Colloids Surfaces A Physicochem. Eng. Asp., 541, 212 (2018). https://doi.org/10.1016/j.colsurfa.2017.04.063
  9. M. Stevanovic, M. Dosic, A. Jankovic, V. Kojic, M. Vukasinovic-Sekulic, J. Stojanovic, J. Odovic, M. C. Sakac, K. Y. Rhee and V. Miskovic-Stankovic, ACS Biomater. Sci. Eng., 4, 3994 (2018). https://doi.org/10.1021/acsbiomaterials.8b00859
  10. S. Tang, B. Tian, Q. F. Ke, Z. A. Zhu and Y. P. Guo, RSC Adv., 40, 41500 (2014).
  11. D. A. Mosselhy, Y. Ge, M. Gasik, K. Nordstrom, O. Natri and S. P. Hannula, Materials (Basel)., 9, 1 (2016). https://doi.org/10.3390/ma9010001
  12. L. Zarate-Reyes, C. Lopez-Pacheco, A. Nieto-Camacho, E. Palacios, V. Gomez-Vidales, S. Kaufhold, K. Ufer, E. G. Zepeda and J. Cervini-Silva, J. Hazard. Mater., 342, 625 (2018). https://doi.org/10.1016/j.jhazmat.2017.08.078
  13. A. S. Maryan, M. Montazer, A. Rashidi and M. K. Rahimi, Asian J. Chem., 25, 2889 (2013). https://doi.org/10.14233/ajchem.2013.14229
  14. G. Lv, C. W. Pearce, A. Gleason, L. Liao, M. P. MacWilliams and Z. Li, J. Asian Earth Sci., 77, 281 (2013). https://doi.org/10.1016/j.jseaes.2013.04.025
  15. L. Zhang, J. Chen, W. Yu, Q. Zhao and J. Liu, J. Nanomater., 2018, 6190251 (2018).
  16. X. Yuan, J. Zhang, R. Zhang, J. Liu, W. Wang and H. Hou, Materials (Basel)., 12, 4148 (2019). https://doi.org/10.3390/ma12244148
  17. M. Honarmand, M. Golmohammadi and A. Naeimi, Mater. Chem. Phys., 241, 122416 (2020). https://doi.org/10.1016/j.matchemphys.2019.122416
  18. I. Fatimah, D. Rubiyanto, I. Sahroni, R. S. Putra, R. Nurillahi and J. Nugraha, Appl. Clay Sci., 193, 105671 (2020). https://doi.org/10.1016/j.clay.2020.105671
  19. I. Fatimah and T. Huda, Appl. Clay Sci., 74, 115 (2013). https://doi.org/10.1016/j.clay.2012.05.002
  20. W. Luo, Z. Geng, Z. Li, S. Wu, Z. Cui, S. Zhu, Y. Liang and X. Yang, Int. J. Nanomedicine, 13, 7491 (2018). https://doi.org/10.2147/IJN.S177784
  21. R. Batul, M. Bhave, P. J. Mahon and A. Yu, Molecules, 25, 1 (2020).
  22. A. Bayoumi, M. T. Sarg, T. Y. A. Fahmy, N. F. Mohamed and W. K. El-Zawawy, Arab. J. Chem., 13, 8920 (2020). https://doi.org/10.1016/j.arabjc.2020.10.018
  23. A. Rapacz-Kmita, E. Stodolak-Zych, M. Dudek, M. Gajek, M. Ziabka, J. Therm. Anal. Calorim., 127, 871 (2017). https://doi.org/10.1007/s10973-016-5918-4
  24. Y. Liu, P. Ji, H. Lv, Y. Qin and L. Deng, Int. J. Biol. Macromol., 98, 550 (2017). https://doi.org/10.1016/j.ijbiomac.2017.01.121
  25. M. Karthikeyan, M. K. Deepa, E. Bassim, C. S. Rahna and K. R. S. Raj, J. Pharm. Innov., Research Article (2020).
  26. D. Wojcik-Pastuszka, J. Krzak, B. Macikowski, R. Berkowski and B. Osinski, Materials (Basel)., 12, 1202 (2019). https://doi.org/10.3390/ma12081202
  27. I. Y. Wu, S. Bala, N. Skalko-Basnet and M. P. D. Cagno, Eur. J. Pharm. Sci., 138, 105026 (2019). https://doi.org/10.1016/j.ejps.2019.105026
  28. G. Arora, K. Malik and I. Singh, Polim. Med., 41, 23 (2011).
  29. R. Gouda, H. Baishya and Z. Qing, J. Dev. Drugs., 06, 1000171 (2017).
  30. X. Chen, C. Xu and H. He, Biophys. Res. Commun., 516, 1085 (2019). https://doi.org/10.1016/j.bbrc.2019.06.163
  31. U. Posadowska and M. Brzychczy-Wloch, Acta Bioeng. Biomech., 17, 41 (2015).
  32. M. Stigter, J. Bezemer, K. D. Groot and P. Layrolle, J. Control. Release, 99, 127 (2004). https://doi.org/10.1016/j.jconrel.2004.06.011
  33. G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelliiano and M. Galdiero, Molecules, 20, 8856 (2015). https://doi.org/10.3390/molecules20058856
  34. D. Garibo, H. A. Borbon-Nunez, J. N. D. D. Leon, E. G. Mendoza, I. Estrada, Y. Toledano-Magana, H. Tiznado, M. Ovalle-Marroquin, A. G. Soto-Ramos, A. Blanco, J. A. Rodriguez, O. A. Romo, L. A. Chavez-Almazan and A. Susarrey-Arce, Sci. Rep., 10, 12805 (2020). https://doi.org/10.1038/s41598-020-69606-7
  35. Y. Y. Loo, Y. Rukayadi, M. A. R. Nor-Khaizura, C. H. Kuan, B. W. Chieng, M. Nishibuchi and S. Radu, Front. Microbiol., 9, 1 (2018). https://doi.org/10.3389/fmicb.2018.00001