• Title/Summary/Keyword: Organic-inorganic solar cells

Search Result 52, Processing Time 0.028 seconds

The Effect of PEDOT:PSS Thickness on the Characteristics of Organic-Inorganic Hybrid Solar Cells (PEDOT:PSS의 두께가 유무기 하이브리드 태양전지 성능에 미치는 영향)

  • Kim, Souk Yoon;Han, Joo Won;Oh, Joon-Ho;Kim, Yong Hyun
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.61-64
    • /
    • 2019
  • In this study, we investigate organic-inorganic hybrid solar cells with a very simple three-layer structure (Al/n-Si/PEDOT:PSS). The performance of hybrid solar cells is optimized by controlling the sheet resistance and optical transmittance of the PEDOT:PSS layers. As the thickness of the PEDOT:PSS layer decreases, the optical absorption of the n-Si increases, which greatly improves the short-circuit current density ($J_{SC}$) of devices, but the increase in sheet resistance leads to a decrease in the open-circuit voltage ($V_{OC}$) and the fill factor (FF). The solar cell with the 180-nm thick PEDOT:PSS layer shows a highest efficiency of 8.45% ($V_{OC}$: 0.435 V, $J_{SC}$: $33.7mA/cm^2$, FF: 57.5%). Considering these results, it is expected that the optimizing process for the sheet resistance and transmittance of the PEDOT:PSS layer is essential for producing high-efficiency organic-inorganic hybrid solar cells and will serve as an important basis for achieving low-cost, high-efficiency solar cells.

Recent Development Status of Organic Solar Cells (유기태양전지의 개발현황)

  • Pang, Chang-Hyun;Park, Keun-Hee;Jung, Dong-Geun;Chae, Hee-Yeop
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.3
    • /
    • pp.167-171
    • /
    • 2007
  • Currently, the alternative energy is one of the critical issues because of exhaustion of petroleum resources and its high cost. The solar cell is considered as the one of the promising alternative energy. And the solar cell can be classified to inorganic solar cell and organic solar cell. Although the efficiency of organic solar cell is very lower than the that of inorganic solar cell, organic solar cells have many advantages including low process cost, high transmittance, color variation, and flexibility. For these reasons, organic solar cells have the potential in low cost solar cell market that is challenging for inorganic solar cells. Recent researches of organic solar cell is concentrating on enhancement of efficiency, lifetime, and stability to order to commercially use. Working principles and the development issues of organic solar cells are discussed in this paper.

Polymer Solar Cells: Fundamentals and Recent Trends

  • Kim, Young-Kyoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.61-61
    • /
    • 2011
  • Polymer solar cells have become one of the rising next generation solar cells due to their potential for lightweight and bendable plastic solar modules. Recently, the power conversion efficiency of polymer solar cells has reached ~8 %, which can make ~6 % plastic solar modules when it comes to the modular aperture ratio of ~80 %. Although this efficiency is far behind that of conventional inorganic solar cells, the plastic solar modules are expected to create new energy market into which the inorganic solar modules could not make inroads. In the near future, the plastic solar modules can be integrated with consumer electronics that should overcome the regulation of energy consumption. For this application, the polymer solar cells should be fabricated in a variety of module shapes, which can be resolved by employing conventional and/or advanced coating and molding technologies of plastics products. In this tutorial, the fundamental aspect of polymer solar cells will be briefly introduced and then recent trends in terms of materials and devices will be reviewed together with showing recent results in organic nanoelectronics laboratory.

  • PDF

Organic-Inorganic Perovskite for Highly Efficient Tandem Solar Cells (고효율 적층형 태양전지를 위한 유무기 페로브스카이트)

  • Park, Ik Jae;Kim, Dong Hoe
    • Ceramist
    • /
    • v.22 no.2
    • /
    • pp.146-169
    • /
    • 2019
  • To overcome the theoretical efficiency of single-junction solar cells (> 30 %), tandem solar cells (or multi-junction solar cells) is considered as a strong nominee because of their excellent light utilization. Organic-inorganic halide perovskite has been regarded as a promising candidate material for next-generation tandem solar cell due to not only their excellent optoelectronic properties but also their bandgap-tune-ability and low-temperature process-possibility. As a result, they have been adopted either as a wide-bandgap top cell combined with narrow-bandgap silicon or CuInxGa(1-x)Se2 bottom cells or for all-perovskite tandem solar cells using narrow- and wide-bandgap perovskites. To successfully transition perovskite materials from for single junction to tandem, substantial efforts need to focus on fabricating the high quality wide- and narrow-bandgap perovskite materials and semi-transparent electrode/recombination layer. In this paper, we present an overview of the current research and our outlook regarding perovskite-based tandem solar technology. Several key challenges discussed are: 1) a wide-bandgap perovskite for top-cell in multi-junction tandem solar cells; 2) a narrow-bandgap perovskite for bottom-cell in all-perovskite tandem solar cells, and 3) suitable semi-transparent conducting layer for efficient electrode or recombination layer in tandem solar cells.

Hybrid Solar Cells with Polymer/Fullerene Bulk Heterojunction Layers Containing in-situ Synthesized CdS Nanocrystals

  • Kwak, Eunjoo;Woo, Sungho;Kim, Hwajeong;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.152-156
    • /
    • 2014
  • We report hybrid solar cells fabricated with polymer/fullerene bulk heterojunction layers that contain inorganic nanocrystals synthesized by in-situ reaction in the presence of polymer chains. The inorganic (cadmium sulfide) nanocrystal ($CdS_{NC}$) was generated by the reaction of cadmium acetate and sulfur by varying the reaction time up to 30 min. The synthesized $CdS_{NC}$ showed a rectangular flake shape, while the size of $CdS_{NC}$ reached ca. 150 nm when the reaction time was 10 min. The performance of hybrid solar cells with $CdS_{NC}$ synthesized for 10 min was better than that of a control device, whereas poor performances were measured for other hybrid solar cells with $CdS_{NC}$ synthesized for more than 10 min.

Silicon-Organic Hybrid Solar Cell Using Ag Nanowire/PEDOT:PSS Layer (은 나노와이어/PEDOT:PSS를 이용한 실리콘-유기물 하이브리드 태양전지)

  • Kyudong Kim;Sungjin Jo
    • Korean Journal of Materials Research
    • /
    • v.34 no.8
    • /
    • pp.395-399
    • /
    • 2024
  • Among various organic materials suitable for silicon-based inorganic-organic hybrid solar cells, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has been extensively studied due to its high optical transmittance, high work function, and low bandgap characteristics. The electro-optical properties of PEDOT:PSS have a significant impact on the power conversion efficiency of silicon-organic hybrid solar cells. To enhance the photovoltaic properties of the silicon-organic hybrid solar cells, we developed a method to improve the properties of the PEDOT:PSS film using Ag nanowires (NW) instead of conventional solvent addition methods. The influence of the Ag NW on the electro-optical property of the PEDOT:PSS film and the photovoltaic performance of the silicon-organic hybrid solar cells were investigated. The addition of Ag NW further improved the sheet resistance of the PEDOT:PSS film, enhancing the performance of the silicon-organic hybrid solar cells. The present work using the low sheet resistance PEDOT:PSS layer paves the way to develop simple yet more efficient silicon-organic hybrid solar cells.

Inorganic charge transport materials for high reliable perovskite solar cells (고신뢰성 페로브스카이트 태양전지용 무기물 기반 전하전달층)

  • Park, So Jeong;Ji, Su Geun;Kim, Jin Young
    • Ceramist
    • /
    • v.23 no.2
    • /
    • pp.145-165
    • /
    • 2020
  • Halide perovskites are promising photovoltaic materials due to their excellent optoelectronic properties like high absorption coefficient, low exciton binding energy and long diffusion length, and single-junction solar cells consisting of them have shown a high certified efficiency of 25.2%. Despite of high efficiency, perovskite photovoltaics show poor stability under actual operational condition, which is the mostly critical obstacle for commercialization. Given that the stability of the perovskite devices is significantly affected by charge-transporting layers, the use of inorganic charge-transporting layers with better intrinsic stability than the organic counterparts must be beneficial to the enhanced device reliability. In this review article, we summarized a number of studies on the inorganic charge-transporting layers of the perovskite solar cells, especially focusing on their effects on the enhanced device reliability.

Impact of CuSCN Deposition Solvents on Highly Efficient Perovskite Solar Cells (고효율 페로브스카이트 태양전지에서의 무기 홀 전도체 CuSCN 용매 효과)

  • Jung, Minsu;Seok, Sang Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.118-122
    • /
    • 2020
  • Inorganic-organic hybrid perovskite solar cells have demonstrated a significant achievement by reaching a certified power conversion efficiency of 25.2% in 2019 as compared to that of 3.8% in 2009. However, organic hole conductors such as PTAA and spiro-OMeTAD are known to be expensive and unstable when they are exposed to operational conditions. In this study, the inorganic hole conductor CuSCN was used to overcome such concerns. The influence of dipropyl sulfide (DPS) and diethyl sulfide (DES) as CuSCN deposition solvents on the underlying perovskite active layer was investigated. DES solvent was observed to be advantageous in terms of CuSCN solubility and mild for the perovskite layer, thereby resulting in a power conversion efficiency of 16.9%.

Development of a flexible solar cell fiber by using an organic-inorganic hybrid materials (${\codt}$ 무기 하이브리드 재료를 이용한 플렉서블 태양전지 섬유의 개발)

  • Song, Jun-Hyung;Kim, Joo-Yong;Park, Jung-Hyun;Kim, Gu-Young;Kim, Young-Kwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.299-301
    • /
    • 2007
  • An organic-inorganic hybrid solar cell fibers with characteristics such as formability, low-cost and tailorability was developed by deposition of C60 and CuPc on fiber surface. In spite of some variation according to the temperature of ITO deposition, the maximum open circuit voltage of 0.39V was attained at $150^{\circ}C$(1000end). The resulting solar cell showed the performances Isc=0.482, Voc=0.320, FF=0.285 ${\eta}_{e}=0.044$% which are comparable to one of other types of solar cells in literature.

  • PDF

Electrical Properties of Photovoltaic cells depending on Simulated design (모의 설계에 따른 Photovoltaic cells의 전기적 특성)

  • Choi, Hyun-Min;Jeong, In-Bum;Kim, Gwi-Yeol;Kim, Tae-Wan;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.36-36
    • /
    • 2010
  • Currently, there are several newly developed energy resources for the future to replace petroleum resources such as hydrogen fuel cell, solar cell, wind power, and etc. Among them, solar cell has attracted a worldwide concern, because it has an enormous amount of resources. In general, a study of solar cells can be classified in to an area of bulk type and thin-film type. Inorganic solar cells based on silicon have been tremendously developed in technology and efficiency. However, since there are many lithographic steps, high processing temperature approximately $1000^{\circ}C$, and expensive raw materials, a manufacturing cost of device are nearly reaching a limit. Contrary to those disadvantages, organic solar cells can be manufactured at room temperature. Also, it has many advantages such as a low cost, easy fabrication of thin film, and possible manufacture to a large size. Because it can be made to be flexible, research and development on solar cells are actively in progress for the next generation. ever though an efficiency of the organic solar cell is low compared to that of inorganic one, a continuous study is needed. In this paper, we report optimal device structure obtained by a program simulation for design and development of highly efficient organic photovoltaic cells. we have also compared simulated results to experimental ones.

  • PDF