• Title/Summary/Keyword: Organic waste

Search Result 1,446, Processing Time 0.035 seconds

Optimal Mixing Ratio of Wastewater from Food Waste and Cattle Manure and Hygienic Aspect in Batch Type Anaerobic Digestion (음식물폐수와 축산분뇨의 혼합소화에서 적정 혼합비 및 소화슬러지의 위생성 연구)

  • Jeong, Doo-Young;Chung, Myung-Hee;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • This research was performed to figure out the optimal mixing ratio of food- to livestock wastewater for the best degradation of organic matter in the anaerobic digestion. The presence of various microorganisms, such as Escherichia coli and Staphylococcus aureus, was also investigated in both wastewater in this process. Enteric bacteria were only found in livestock wastewater, whereas pathogenic bacteria like S. aureus were detected in both wastewater. The optimal mixing ratio of food- to livestock wastewater for the best mineralization was found to fifty to fifty, with reduction ratios of $BOD_5$, CODcr SS as 23.2%, 24.7%, 19.7%, respectively. Hygiene of the digested sludge was also analyzed by counting the number of total colonies and various pathogens. Enterobacteriaceae including E. coli were barely detected in 10 days after reaction. Meanwhile, S. aureus was gradually reduced during reaction, even showing 1,000~5,000 CFU/mL in final days.

Anaerobic Organic Wastewater Treatment and Energy Regeneration by Utilizing E-PFR System (E-PER 반응기를 이용한 유기성 폐기물의 혐기성 처리와 재생에너지 생산에 관한 연구)

  • Kim, Burmshik;Choi, Hong-Bok;Lee, Jae-Ki;Park, Joo Hyung;Ji, Duk Gi;Choi, Eun-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • Wastewater containing strong organic matter is very difficult to treat by utilizing general sewage treatment plant. but the wastewater is adequate to generate biomass energy (bio-gas; methane gas) by utilizing anaerobic digestion. EcoDays Plug Flow Reactor (E-PFR), which was already proved as an excellent aerobic wastewater treatment reactor, was adapted for anaerobic food wastewater digestion. This research was performed to improve the efficiency of bio-gas production and to optimize anaerobic wastewater treatment system. Food wastewater from N food waste treatment plant was applied for the pilot scale experiments. The results indicated that the efficiency of anaerobic wastewater treatment and the volume of bio-gas were increased by applying E-PFR to anaerobic digestion. The structural characteristics of E-PFR can cause the high efficiency of anaerobic treatment processes. The unique structure of E-PFR is a diaphragm dividing vertical hydraulic multi-stages and the inversely protruded fluid transfer tubes on each diaphragm. The unique structure of E-PFR can make gas hold-up space at the top part of each stage in the reactor. Also, E-PFR can contain relatively high MLSS concentration in lower stage by vertical up-flow of wastewater. This hydraulic flow can cause high buffering capacity against shock load from the wastewater in the reactor, resulting in stable pH (7.0~8.0), relatively higher wastewater treatment efficiency, and larger volume of bio-gas generation. In addition, relatively longer solid retention time (SRT) in the reactor can increase organic matter degradation and bio-gas production efficiency. These characteristics in the reactor can be regarded as "ideal" anaerobic wastewater treatment conditions. Anaerobic wastewater treatment plant design factor can be assessed for having 70 % of methane gas content, and better bio-gas yielding and stable treatment efficiency based on the results of this research. For example, inner circulation with generated bio-gas in the reactor and better mixing conditions by improving fluid transfer tube structure can be used for achieving better bio-gas yielding efficiency. This research results can be used for acquiring better improved regenerated energy system.

  • PDF

Anaerobic Biodegradability of Leachates Generated at Landfill Age (매립년한에 따른 침출수의 혐기성 생분해 특성)

  • Shin, Hang-Sik;Lee, Chae-young;Kang, Ki-hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.1
    • /
    • pp.90-96
    • /
    • 2000
  • The composition of leachates varies depending on the waste characteristics, landfill age and landfilling method. Generally, leachates contain high dissolved organic substance and ammonia nitrogen whereas phosphorus concentration was very low. Leachate A produced from young landfill is characterized by high BOD5/COD ratio (0.8) whereas leachate C produced from old landfill has lower BOD5/COD ratio (0.1). Maximum biochemical methane potential of leachate A, B (from medium landfill) and C were 271,106 and 4 ml CH4/g-COD, respectively. On the other hand, the maximum biodegradability of leachate A, B, and C were 75,30, and 1%, respectively. These results indicated that anaerobic treatment of leachate from young landfill was effective in removing organic pollutants. In case of leachate C, carbon might reside in the form of large molecular weight organic compounds such as lignins, humic acids and other polymerized compounds of soils, which are resistant to biodegradation. The lag-phase period increased with the increasing organic concentration in leachate. In case of leachate A of concentration greater than 25%, the lag-phase period increased sharply. This implied that the start-up period of anaerobic process using an unacclimated inoculum could be extended due to the higher concentration of leachate. This relatively long lag-phase is probably related to the fact that most of the inhibitory compounds have been diluted beyond their inhibitory concentrations of less than 50%. Furthermore, the ultimate methane yield and methane production rate decreased as leachate concentration increased. It was anticipated the potential inhibition was related with the steady-state inhibition as well as the initial shock load.

  • PDF

Removal of Organic Matter and Nitrogen from River Water in a Model System of Floodplain Filtration (홍수터 여과 모형을 이용한 하천수중의 유기물과 질소 제거)

  • Ha, Hyun-Soo;Kim, Sang-Tae;Kim, Seung-Hyun;Jeong, Byeong-Ryong;Lee, Young-Deuk;Eum, Jin-Sup;Ji, Seung-Hwan;Chung, Jong-Bae
    • Applied Biological Chemistry
    • /
    • v.45 no.2
    • /
    • pp.84-91
    • /
    • 2002
  • If contaminated river water is sprayed over the floodplain, organic matter and nitrogen would be removed by microbial processes in the rhizosphere of vegetation during the filtration through soil. In this study we tested the organic matter and nitrogen removal from contaminated river water by the floodplain filtration. Model system of floodplain was constructed using a PVC pipe (15 cm i.d. ${\times}$ 150 cm L) which was packed with a loamy sand soil collected from a floodplain in Nakdong river. The model system was instrumented with soil solution samplers and gas samplers. A river water collected from Omogcheon in Kyongsan was sprayed from top of the model system at three different rates. The concentration of organic matter, DO, $NO_3^-$, $NO_2^-$, $NH_4^+$, $N_2$ and $N_2O$, and redox potential were measured as a function of soil depth for 24 days after the system reached a steady state. When river water was sprayed at the rates of 40.8 and 68.0 $l/m^2/day$, a significant reductive condition for denitrification was developed at below 5-cm depth of the soil. When the water reached at 90-cm depth of the soil, COD and concentration of inorganic nitrogen were lowered, on an average, from 18.7 to 5 mg/l and from 2.7 to 0.4 mg/l, respectively. $N_2$ comprised most of the N gas evolved from denitrification and $N_2O$ concentrations emitted at the surface of soil were less than 1 {\mu}l/l. The effective removal of organic matter and nitrogen by the filtration in the model system of floodplain demonstrates that the native floodplains, which include rhizosphere of vegetation at the top soil, could be more effective in the treatment of contaminated river waters and other industrial waste waters containing high concentration of organic matter and nitrogen.

The Study of Solid Waste Compost Development for Reclaiming Damage Soil in Forest (산림훼손토양 복원을 위한 부숙토 개발 연구)

  • Na, Seung-Ju;Chang, Ki-Woon;Yang, Hui-Young;Jeon, Han-Ki;Lee, Jong-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.2
    • /
    • pp.107-120
    • /
    • 2005
  • To study the development of solid waste compost to use sewage sludge and paper mill sludge for reclaiming damage soil in forest, the changes of temperature, moisture, chemical properties, heavy metals and harmful compound during the aerobic decomposition were investigated, and the compost decomposition of final products investigated the round paper chromatography method and G.I(Germination index) value. The results were summarized as follows. Temperature was changed a little during early 5days because of air temperature too low. That was rapidly increased to over $50^{\circ}C$ at 4days after first turning and then decreased gradually fallen to $40{\sim}50^{\circ}C$ at 15days after aerobic decomposition in A and C treatments. The second turning was conducted at 18 days after aerobic decomposition, and then the temperature was little changed. At the compare first with terminal product, The moisture content was decreased all treatments but the change was little in A and B treatments. pH was decreased to below 1 in all treatments. EC was increased to below 5dS/m. The content of total carbon, C/N ratio, $NH_4{^+}-N$ were decreased with 4~7%, below 8 and below 500mg/kg in all treatments, respectively. The content of total nitrogen, $NO_3{^-}-N$, CEC were increased with below 0.5%, below 173mg/kg and over $30cmol^+/kg$ in all treatments, respectively. The content of heavy metals and harmful compound were similar during aerobic decomposition and suited to standard of 가 grade in all treatments. The result of round paper chromatography method and G.I. value, The C treatment concluded well aerobic decomposition. Especially, the G.I. value in C treatment was 64.1 and 66.2 at cabbage and grass, respectively.

  • PDF

Effect of Vermicast Application of Earthworm Feeding Food Waste in Vegetable Plants (Radish and Chinese Cabbage) Growth (음식물 쓰레기를 먹이로 한 지렁이분립이 채소류(열무와 엇갈이배추) 생육에 미치는 영향)

  • Choi, I-Jin;Kwon, Hyuk-Hyun;Lee, Han-Ho;Son, Hyoung-Gi;Hong, Sang-Kil;Park, Yu-Soon;Kang, Jong-Woon
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.715-725
    • /
    • 2012
  • This study was performed to make the method of food waste manufacturing for feeding to earthworm and different ratio of earthworm cast was investigated for applying vegetable plants that cultivated in a family or roof garden. We made conventional treatment of gardening soil and prepared soils with earthworm cast (the only fertilizer) at 30, 50, 70 and 100% for planting vegetable plants and then we studied its growth feature. The treatment was repeated three times with 12 weeks for each time. The cultivation of radish and chinese cabbage were managed at the same cultivation level for RDA standard cultivation method, and each sample of soils and plants was analyzed by appropriate analysis method. The growth investigation was performed 12 week after planting, and as for growth characteristics, height, leaf diameter, leaf number, leaf length, fresh weight and dry weight were investigated. The chemical characteristics, soils and plants, were surveyed. As for the growth characteristics investigated, radish and chinese cabbage showed the biggest growth in 70% and 50% treatment with average growth of all characteristics, height, leaf diameter, leaf number, leaf length, fresh weight and dry weight, respectively. Applying these results, a new equation for vermicast recommendation for radish and Chinese cabbage in summer (June-August) was presented. The earthworm cast 50% level with the gardening soil showed the high production in chinese cabbage. In case of radish, earthworm cast 70% with gardening soil level showed great growth, significantly.

Characterization of Dissolved Organic Matter in Stream and Industrial Waste Waters of Lake Sihwa Watershed by Fluorescence 3D-EEMs Analysis (형광 3D-EEMs를 이용한 시화호유역 하천 및 공단폐수의 유기물 특성 분석)

  • Lee, Mi-Kyung;Choi, Kwang-Soon;Kim, Sea-Won;Kim, Dong-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.803-810
    • /
    • 2009
  • This study is conducted to examine spatial variations of Dissolved Organic Matter (DOM) in stream and waste waters of the different watershed areas (agricultural, residential, and industrial complex area) by using fluorescence 3D-EEMs (3 Dimensional Excitation Emission Matrix Spectroscopy). Furthermore, the research investigates the changes of DOM characterization by synchronous and 3D-EEMs during a rainfall event. The characterizations of DOM obtained by 3D-EEMs show two noticeable peaks at humic and protein-like regions. Humic-like substances (HLS) are found in rural and urban areas, and humic and protein-like substances (PLS) are shown in industrial area. According to the fluorescence peak $T_1:C_1$ ratios, it is observed that high amount of HLS was discharged from Banweol Industrial Complex (3TG). Additionally, linear relationships (Regression rate, $r^2$=0.65, $r^2$=0.66) have been shown between PLS (peak $T_1,\;B_1$) and biochemical oxygen demand (BOD), which indicates the impact of sewage. For the rainfall event (30 mm), no remarkable difference of DOM was found at rural area except increment of fluorescence intensity comparing dry period. In contrast, HLS at urban area is highly discharged within 30 minutes from the beginning of rainfall. Also, there are high influences of HLS and PLS within 20 minutes at industrial complex (4TG). Fluorescence 3D-EEMs has not only verifies a watershed of DOM origination but also monitors diffuse and point source impacts.

A Study on the Lime Stabilization of Livestock Waste (축산폐기물의 안정화 처리에 대한 연구)

  • Kim, Hyun-Chul;Choi, Yong-Su
    • Analytical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.91-99
    • /
    • 1995
  • One of alternative conventional technologies used for treatment of livestock wastes is composting process, and recently some mechanical composting processes are being practiced. It is, however, recognized the composting process also has its own limitations such as longer time requirement, and difficulties to estimate the degree of decomposition, etc. The incomplete compost contains potentially harmful materials to crops and public health due to instabilized organic contents and pathogenic organisms. The purpose of this investigation is to develop an innovative system whereby anxious livestock wastes are thoroughly stabilized and disinfected. Thus the overall management scheme should meet the following requirements. 1. A system should be in a cost-effective and environmentally sound manner. 2. Sludges must be chemically stabilized and bacteriologically safe. 3. Odor-free by product should be applied to crop land. 4. Sludges are sources of fertilizer nutrients and/or soil amendments to enhance crop production. 5. And they can be used as potential pH adjusting agent of the acidified soils. Overall effectiveness of the developed system is experimentally tested to satisfy the preset criteria and requirements. Major experiments are divided into four categories: they are 1. chemical stability test, 2. optimal condition test of stabilization process, 3. bacteriological examination and disinfection tests, and 4. deodorization tests The stabilization process is consisted of the stabilizing reaction process and the drying process. Stabilized wastes is dried by both sun dryer and rotary dryer. It is shown that an additive dosage of about g/kg solid in wastes with a minimum of 5-minutes reaction would be necessary for effective stabilization reaction. The stabilization process is consisted of the stabilizing reaction process and drying process. Stabilized wastes are dried by both sun dryer and rotary dryer. It is shown that an additive dosage of about 300g/kg solid in wastes with a minimum of 5-minutes reaction would be necessary for effective stabilization reaction. In the stabilization reaction process, the pH of wastes is lowered from initial values of 12.3 to 8.6. High pH prevents odor production and kills pathogenic organisms. Organic matter contents in the stabilized wastes are about 50% and the sum of contents of fertilizer elements such as total nitrogen, $P_2O_5$ and $K_2O$ are about 5.3%. The livestock wastes that are stabilized chemically and hygienically can be used as a good soil conditioner and/or organic fertilizer.

  • PDF

Toxicity of Organic Waste-Contaminated Soil on Earthworm (Eisenia fetida) (유기성 폐기물에 의해 오염된 토양이 지렁이에게 미치는 독성)

  • Na, Young-Eun;Bang, Hae-Son;Kim, Myung-Hyun;Lee, Jeong-Taek;Ahn, Young-Joon;Yoon, Seong-Tak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.51-56
    • /
    • 2007
  • The toxicities of contaminated soils with 8 consecutive year applications of three levels (12.5, 25.0, and $50.0t\;dry\;matter\;ha^{-1}yr^{-1}$) of four organic sludge [municipal sewage sludge (MSS), industrial sewage sludge (ISS), alcohol fermentation processing sludge (AFPS) and leather processing sludge (LPS)] on earthworm (Eisenia fetida) were examined by using microcosm container in the laboratory. Results were compared with those of pig manure compost (PMC) treated soil. In tests with three treatment levels (12.5, 25.0, and 50.0 t per plot), ISS treated soil showed higher contents of Cu (18.9~26.2 fold), Cr (7.7~34.7 fold), and Ni (14.8~18.8 fold) at 8 years post treatment, than PMC treated soil. LPS treated soil showed higher contents of Cr (35.7~268.0 fold) and Ni (4.5~7.6 fold) than PMC treated soil. There were no great differences in heavy metal contents among MSS, AFPS, and PMC treated soils. In these contaminated soils, earthworm mortalities of MSS and AFPS treated soils at 8 weeks post-exposure were similar to those of PMC treated soil regardless of each treatment level. Toxic effect (26.7~96.7 mortality) on the ISS and LPS treated soils was significantly higher than one of PMC treated soil, with an exception of LPS soil treated with 25.0 t per plot. At 16 weeks post-exposure, earthworm mortalities of AFPS' 12.5 and 25.0 t treated soils were similar to those of PMC treated soil. Toxic effect (53.3~100 mortality) on the 12.5, 25.0, and 50.0 t treated soils of MSS, ISS and LPS, and AFPS' 50.0 t treated soils was significantly higher than those of PMC treated soil. The data suggested that the 12.5, 25.0, and 50.0 t of MSS, ISS and LPS, and AFPS' 50.0 t treated soils were evaluated to have toxicity on earthworm.

Study of Iodide Adsorption on Organobentonite using X-ray Absorption Spectroscopy (X-선 흡수분광기를 이용한 유기벤토나이트의 요오드 흡착연구)

  • Yoon, Ji-Hae;Ha, Ju-Young;Hwang, Jin-Yeon;Hwang, Byoung-Hoon;Gordon E. Brown, Jr.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.23-34
    • /
    • 2009
  • The adsorption of iodide on untreated bentonite and bentonites modified with organic cation (i.e., hexadecylpyridinium chloride monohydrate ($HDP^+$)) was investigated, and the organobentonites were characterized using uptake measurements, ${\mu}$-XRD, and electrophoretic mobilities measurement. Uptake measurements indicate that bentonite has a high affinity for $HDP^+$. Our ${\mu}$-XRD study indicates that organobentonites significantly expanded in basal spacing and organic cations were substantially intercalated into the interlayer spaces of bentonite. The electrophoretic mobility indicates that organobentonite tht is modified with organic cations in excess of the CEC of bentonite is completely different from untreated bentonite in the surface charge distribution. We found significant differences in adsorption capacities of iodide depending on the bentonite properties as follows: iodide adsorption capacities were 439 mmol/kg for the bentonite modified with $HDP^+$ at an equivalent amount corresponding to 200% of the CEC of bentonite whereas no adsorption of iodide was observed for the untreated bentonite. The molecular environments of iodine adsorbed on organobentonites were further studied using I K-edge and $L_{III}$-edge x-ray absorption spectroscopy (XAS). The X-ray absorption near-edge structure (XANES) of iodine spectra from organobentonites was similar to that of KI reference solution. Linear combination fitting of EXAFS data suggests the fraction of iodine reacted with the organic compound increased with increasing loading of the organic compound on organobentonites. In this study, we observed significant differences in the adsorption environments of iodide depending on the modified property of bentonite and suggest that an organobentonite has potential as reactive barrier material around a nuclear waste repository containing anionic radioactive iodide.