Characterization of Dissolved Organic Matter in Stream and Industrial Waste Waters of Lake Sihwa Watershed by Fluorescence 3D-EEMs Analysis

형광 3D-EEMs를 이용한 시화호유역 하천 및 공단폐수의 유기물 특성 분석

  • Lee, Mi-Kyung (Korea Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Choi, Kwang-Soon (Korea Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Kim, Sea-Won (Korea Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Kim, Dong-Sup (Korea Institute of Water and Environment, Korea Water Resources Corporation)
  • 이미경 (한국수자원공사 수자원연구원) ;
  • 최광순 (한국수자원공사 수자원연구원) ;
  • 김세원 (한국수자원공사 수자원연구원) ;
  • 김동섭 (한국수자원공사 수자원연구원)
  • Received : 2009.07.06
  • Accepted : 2009.08.21
  • Published : 2009.09.30

Abstract

This study is conducted to examine spatial variations of Dissolved Organic Matter (DOM) in stream and waste waters of the different watershed areas (agricultural, residential, and industrial complex area) by using fluorescence 3D-EEMs (3 Dimensional Excitation Emission Matrix Spectroscopy). Furthermore, the research investigates the changes of DOM characterization by synchronous and 3D-EEMs during a rainfall event. The characterizations of DOM obtained by 3D-EEMs show two noticeable peaks at humic and protein-like regions. Humic-like substances (HLS) are found in rural and urban areas, and humic and protein-like substances (PLS) are shown in industrial area. According to the fluorescence peak $T_1:C_1$ ratios, it is observed that high amount of HLS was discharged from Banweol Industrial Complex (3TG). Additionally, linear relationships (Regression rate, $r^2$=0.65, $r^2$=0.66) have been shown between PLS (peak $T_1,\;B_1$) and biochemical oxygen demand (BOD), which indicates the impact of sewage. For the rainfall event (30 mm), no remarkable difference of DOM was found at rural area except increment of fluorescence intensity comparing dry period. In contrast, HLS at urban area is highly discharged within 30 minutes from the beginning of rainfall. Also, there are high influences of HLS and PLS within 20 minutes at industrial complex (4TG). Fluorescence 3D-EEMs has not only verifies a watershed of DOM origination but also monitors diffuse and point source impacts.

본 연구에서는 유역특성이 뚜렷이 구분되는 시화호 유역(농촌, 도심지역, 공단지역)의 하천수 및 공단폐수를 대상으로 형광 3D-EEMs (3-Dimensional Excitation Emission Matrix Spectroscopy)를 이용하여 DOM (Dissolved Organic Matter)의 공간적 분포 특성을 파악하였다. 또한, 강우시 synchronous와 3D-EEMs를 이용하여 시간에 따른 DOM의 변화 특성을 보았다. 3D-EEMs로 부터 나타난 주요 DOM 물질은 휴믹계물질(Humic Like Substances, HLS)과 단백질계물질(Protein Like Substances, PLS)로 농촌 및 도심유역에서는 HLS가 주로 분포하였으며, 공단유역에서는 HLS 뿐만 아니라, PLS도 높게 나타났다. 각 지점별 DOM의 형광 peak $T_1:C_1$ ratio로 부터 반월공단(3TG)에서 난분해성 휴믹계 물질이 매우 높은 것으로 나타났다. 또한, 조사지점의 PLS 물질(peak $T_1$, peak $B_1$)과 BOD 농도가 직선의 상관성($r^2$=0.65, $r^2$=0.66)을 보여, 이러한 원인은 하수 유입 등에 의한 영향으로 보인다. 강우시(Rainfall, 30 mm) 시간에 따른 DOM의 모니터링 결과, 농촌유역에서는 HLS와 PLS가 비강우시와 비교하여 형광세기만 높아졌을 뿐, 구성 물질 의 변화 특성은 보이지 않았다. 한편, 도심유역에서는 HLS의 강우 초기 30분 내에 유출이 높은 것으로 나타났으며, 공단유역(4TG)에서도 강우 초기 20분 내에 HLS와 PLS의 유출이 매우 높게 나타났다. 본 연구로부터 형광 3D-EEMs는 유역의 DOM 기원을 밝히고, 비점오염원 및 하 폐수를 모니터링 하는데 있어 유용한 tool로 적용될 수 있음을 제시한다.

Keywords

References

  1. Steinberg, C. E. W., “Ecology of humic substances in freshwaters”, Berlin Heidelberg New York: Springer(2003)
  2. Wetzel, R. G., Hatcher, P. G., and Bianchi, T. S., “Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substances for rapid bacterial metabolism”, Limnol. Oceanogr., 40(8), 1369-1380(1995) https://doi.org/10.4319/lo.1995.40.8.1369
  3. McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., and Andersen, D. T.,“ Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity”, Limnol. Oceanogr., 46, 38-48(2001) https://doi.org/10.4319/lo.2001.46.1.0038
  4. Parlanti, E., Worz, K., Geoffroy, L., and Lamotte, M.“, Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs”, Org. Geochem., 31, 1765-1781(2000) https://doi.org/10.1016/S0146-6380(00)00124-8
  5. Hur, J., Williams, M. A., and Shlautman, M. A., “Evaluating spectroscopic and chromatographic techniques to resolve dissolved organic matter via end member mixing analysis,” Chemosphere, 63, 387-402(2006) https://doi.org/10.1016/j.chemosphere.2005.08.069
  6. Hudson, N., Baker, A. and Reynolds, D.,“ Fluorescence analysis of dissolved organic matter in natural”, Waste and polluted waters-a review, River res. appli., 23, 631-649 (2007) https://doi.org/10.1002/rra.1005
  7. Liu, R., Lead, J. R., and Baker, A.,“ Fluorescence characterization of cross flow ultrafiltration derived freshwater colloidal and dissolved organic matter”, Chemosphere, 68, 1304-1311(2007) https://doi.org/10.1016/j.chemosphere.2007.01.048
  8. Coble, P. G.,“ Characterization of marine and terrestrial DOM in seawater using exciation-emission matrix spectroscopy”, Mar. Chem., 51, 325-346(1996) https://doi.org/10.1016/0304-4203(95)00062-3
  9. Marhaba, T. F., and Lippincott, R. L., “Application of fluorescence technique for rapid identification of DOM fractions in source waters”, J. Environ. Eng., 126(11), 1039-1044(2000) https://doi.org/10.1061/(ASCE)0733-9372(2000)126:11(1039)
  10. Marhaba, T. F., Van, D., and Lippincott, R. L., “Rapid identification of dissolved organic matter fractions in water by spectral fluorescent signatures”, Water Res., 34(14), 3543-3550(2000) https://doi.org/10.1016/S0043-1354(00)00090-7
  11. Henderson, R. K., Baker, A., Murphy, K. R., Hambly, A., Stuetz, R. M., and Khan, S. J., “Fluorescence as a potential monitoring tool for recycled water systems: A review”, Water Res., 43(4), 863-881(2009) https://doi.org/10.1016/j.watres.2008.11.027
  12. Wu, F. C., Kothawala, D. N., Evans, R.D., Dillon, P. J., and Cai, Y. T., “Relationships between DOC concentration, molecular size and fluorescence properties of DOM in a stream”, Appl. Geochem., 22, 1659-1667(2007) https://doi.org/10.1016/j.apgeochem.2007.03.024
  13. Baker, A., “Thermal fluorescence quenching properties of dissolved organic matter”, Water Res., 39(18), 4405-4412(2005) https://doi.org/10.1016/j.watres.2005.08.023
  14. Baker, A. Elliott, S., and Lead, J.R,“ Effects of filtration and pH perturbation on freshwater organic matter fluorescence”, Chemosphere, 67, 2035-2043(2007)
  15. Baker, A., Ward, D., Lieten, S. H., Periera, R., Simpson, E. C., and Slater, M., “Measurement of protein-like fluorescence in river and waste water using a handheld spectrophotometer”, Water Res., 38, 2934-2938(2004) https://doi.org/10.1016/j.watres.2004.04.023
  16. Baker, A., and Curry, M.,“ Fluorescence of leachates from three contrasting landfills”, Water Res., 38(10), 2605-2613(2004) https://doi.org/10.1016/j.watres.2004.02.027
  17. Baker, A., and Inverarity, R., “Protein-like fluorescence intensity as a possible tool for determining river water quality”, Hydrological Processes, 18(15), 2927-2945(2004) https://doi.org/10.1002/hyp.5597
  18. Kuzniz, T., Halot D., Mignani, A. G., Ciaccheri, L., Kalli, K., Tur, M., Othonos, A., Christofides, C., and Jackson, D. A., “Instrumentation for the monitoring of toxic pollutants in water resources by means of neutral network of absorption and fluorescence spectra”, Sens. Actuators, 121, 231-237 (2007)
  19. 국토해양부, 시화호 해양환경 개선 사업(2008)
  20. 최광순, 김세원, 김동섭, 허우명, 이윤경, 황인서, 이한진, “물교환이 제한적인 시화호 상류 기수역의 부영양화, 한국하천호수학회지, 41(2), 216-227(2008)
  21. Baker, A., “Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers”, Environ. sci. Technol., 35(5), 948-953(2001) https://doi.org/10.1021/es000177t
  22. Hur, J. Hwang, S., and Shin, J., “ Using synchronous fluorescence technique as a water quality monitoring tool for an Urban river”, Water, Air, Soil Pollut., 191, 213-243(2008)
  23. Yamashita, Y., and Tanous, E., “Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids”, Mar. Chem., 82(3), 255-271(2003) https://doi.org/10.1016/S0304-4203(03)00073-2
  24. Maie, N., Scully, N. M., Pisani, O., and Jaffe, R.,“ Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems”, Water Res., 41, 563-570(2007) https://doi.org/10.1016/j.watres.2006.11.006
  25. Cammack, W. K. L., Kalf, J., Prairie, T. T., and Smith, E. M., “Fluorescence dissolved organic matter in lake: relationship with heterotrophic metabolism”, Limnol. Oceanogr, 49(6), 2034-2045(2004) https://doi.org/10.4319/lo.2004.49.6.2034
  26. Elliott S, Lead J. R., and Baker A., “Characterisation of the fluorescence from freshwater, planktonic bacteria”, Water Res., 40(10), 2075-2083(2006) https://doi.org/10.1016/j.watres.2006.03.017
  27. Nguten, M. L., Westerhoff, P., Baker, L., Hu, Q., and Esparzasoto, M., “Characteristics and reactivity of algae-produced dissolved organic carbon”, J. Environ. Eng., 131(11), 989-1002 (2005)