• Title/Summary/Keyword: Organic vapor

Search Result 760, Processing Time 0.026 seconds

Fabrication of Pentacene Thin Film Transistors by using Organic Vapor Phase Deposition System (Organic Vapor Phase Deposition 방식을 이용한 펜타센 유기박막트랜지스터의 제작)

  • Jung Bo-Chul;Song Chung-Kun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.512-518
    • /
    • 2006
  • In this paper, we investigated the deposition of pentacene thin film on a large area substrate by Organic Vapor Phase Deposition(OVPD) and applied it to fabrication of Organic Thin Film Transistor(OTFT). We extracted the optimum deposition conditions such as evaporation temperature of $260^{\circ}C$, carrier gas flow rate of 10 sccm and chamber vacuum pressure of 0.1 torr. We fabricated 72 OTFTs on the 4 inch size Si Wafer, Which produced the average mobility of $0.1{\pm}0.021cm^2/V{\cdot}s$, average subthreshold slope of 1.04 dec/V, average threshold voltage of -6.55 V, and off-state current is $0.973pA/{\mu}m$. The overall performance of pentacene TFTs over 4 ' wafer exhibited the uniformity with the variation less than 20 %. This proves that OVPD is a suitable methode for the deposition of organic thin film over a large area substrate.

Growth of Rubrene Crystalline Wire via Solvent-vapor Annealing

  • Park, Ji-Hoon;Choi, Jeong-M.;Lee, Kwang-H.;Mun, Sung-Jin;Ko, G.;Im, Seong-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.871-873
    • /
    • 2009
  • We report on the growth of rubrene ($C_{42}H_{28}$) wire fabricated by thermal evaporation, followed by solvent-vapor annealing for the application of organic thin film transistor. Solvent-vapor annealing was carried out in precisely controlled vapor pressure at elevated temperature. Micro-sized, and elongated rubrene wire was obtained via solvent annealing process reproducibly. Optical image and XRD data shows highly crystalline quality of rubrene wire.

  • PDF

Solvent-vapor surface treatment induced performance improvement of organic solar cells

  • Kim, Chang-Su;Kang, Jae-Wook;Kim, Do-Geun;Kim, Jong-Kuk
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.42-43
    • /
    • 2011
  • Improvement of the photovoltaic efficiency via exposure of organic solar cells to solvent-vapor at room temperature is reported. Carbon disulfide ($CS_2$) vapor treatment can induce Poly(3-hexylthiophene) (P3HT) self-organization into ordered structure leading to enhanced hole transport and light absorption. The power conversion efficiency (PCE) of the organic solar cells can be increased from 0.89 to 1.67% by solvent-vapor treatment.

  • PDF

A Study on Breakthrough of Respirator Cartridge Using Multi-Organic Vapor Mixtures (복합유기용제에 노출된 호흡보호구용 정화통의 파과에 관한 연구)

  • Chung, Hai-Dong;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.1
    • /
    • pp.55-66
    • /
    • 1996
  • This study was conducted to evaluate breakthrough characteristics of respirator cartridge using multi-organic vapors, including carbon tetrachloride, trichloroethylene, and toluene. The organic vapors were used as single phase, binary system, and ternary system. The results are summarized as follows. 1. Organic vapors studied were 1,000 ppm, 750 ppm, 500 ppm and 250 ppm in single phase. Carbon tetrachloride having the highest molecular weight showed the breakthrough first, and breakthrough sequency by organic vapor was dependent on its molecular weight. The 10% breakthrough times at 1,000 ppm of organic vapor were 97 minutes for carbon tetrachloride, 129 minutes for trichloroethylene and 135 minutes for toluene. 2. When concentrations of organic vapors were at levels of the Threshold Limit Values, the lives of the respirator cartridges were 122 hours in carbon tetrachloride, 18 hours in trichloroethylene and 28 hours in toluene. 3. In the binary system at a total concentration of 1,000 ppm with carbon tetrachloride and trichloroethylene, breakthrough times ranged from 104 minutes to 125 minutes, which were longer than 97 minutes in a single phase (1,000 ppm) for carbon tetrachloride, but shorter than breakthrough times for TCE and Toluene. 4. Breakthrough times in the binary system with carbon tetrachloride and toluene were 131~132 minutes. 5. Breakthrough times in the ternary system with carbon tetrachloride, toluene, and trichloroethyl ene were $120{\pm}8$ minutes, which were longer than 97 minutes in the single phase (1,000 ppm) for carbon tetrachloride, equal to 129 minutes for trichloroethylene, and shorter than 135 minutes for toluene. Those were almost similar to $124{\pm}9$ minutes of breakthrough times in the binary systems.

  • PDF

Metal Organic Chemical Vapor Deposition Characteristics of Germanium Precursors (Metal Organic Chemical Vapor Deposition법을 이용한 Germanium 전구체의 증착 특성 연구)

  • Kim, Sun-Hee;Kim, Bong-June;Kim, Do-Heyoung;Lee, June-Key
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.302-306
    • /
    • 2008
  • Polycrystalline germanium (Ge) thin films were grown by metal organic chemical vapor deposition (MOCVD) using tetra-allyl germanium [$Ge(allyl)_4$], and germane ($GeH_4$) as precursors. Ge thin films were grown on a $TiN(50nm)/SiO_2/Si$ substrate by varying the growth conditions of the reactive gas ($H_2$), temperature ($300-700^{\circ}C$) and pressure (1-760Torr). $H_2$ gas helps to remove carbon from Ge film for a $Ge(allyl)_4$ precursor but not for a $GeH_4$ precursor. $Ge(allyl)_4$ exhibits island growth (VW mode) characteristics under conditions of 760Torr at $400-700^{\circ}C$, whereas $GeH_4$ shows a layer growth pattern (FM mode) under conditions of 5Torr at $400-700^{\circ}C$. The activation energies of the two precursors under optimized deposition conditions were 13.4 KJ/mol and 31.0 KJ/mol, respectively.

Detection of Organic Halide by Using cis,cis-1,2,3,4-Tetraphenylbutadiene thin Film (cis,cis-1,2,3,4-Teteraphenylbutadiene 박막 필름을 이용한 유기 할로겐 화합물 감지)

  • Park, Jaehyun
    • Journal of Integrative Natural Science
    • /
    • v.3 no.4
    • /
    • pp.215-218
    • /
    • 2010
  • cis,cis-1,2,3,4-Tetraphenylbutadiene has been synthesized and its optical properties are investigated by using UV-Vis absorption and fluorescence spectroscopy. Thin films of tetraphenylbutadiene prepared from thin layer chromatography(TLC) displays strong luminescence and used for the detection of vapor of organic halide. Tetraphenylbutadiene shows dramatic quenching photoluminescence under exposure of chloroform vapor.

Adsorption Characteristics of a Respirator Cartridge for Organic Vapor Packed with Activated Carbon Fiber (활성탄소섬유가 충전된 유기가스용 방독마스크 정화통의 흡착특성)

  • Shin, Chang-Sub;Kim, Ki-Hwan;Kang, Young-Goo
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.84-91
    • /
    • 2000
  • The adsorption characteristics of a respirator cartridge is affected by the kind of adsorbent, concentration of organic vapor, humidity and packing density of cartridge. In this study, activated carbon fiber(ACF) instead of activated carbon is used as a adsorbent of cartridges for the removement of organic vapor and the adsorption characteristics were examined. ACF made of cellulose showes high efficiency for the removal of carbon tetrachloride and the adsorption capacity was 0.569g/g ACF at 450 ppm. The relative humidity dose not affected to the adsorbed amount and Langmuir Isotherm was more adequate than Freundlich Isotherm for this adsorption phenomena.

  • PDF

OLED display manufacturing by Organic Vapor Phase Deposition

  • Marheineke, B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1676-1681
    • /
    • 2006
  • We report on Organic Vapor Phase Deposition $(OVPD^{(R)})$ an innovative deposition technology for organic light emitting device (OLED) and organic semiconductor manufacturing. The combination of $OVPD^{(R)}$ with Close Coupled Showerhead (CCS) technology results in manufacturing equipment with vast potential for cost effective manufacturing of OLED displays commercially competitive to LCD. The actual $OVPD^{(R)}$ equipment concept and design is discussed: Computational Fluid Dynamic (CFD) modeling is compared with experimental results proving the excellent controllability of the deposition process. Further other production relevant deposition properties are being reviewed e.g. high deposition rates and high organic material utilization efficiency of the $OVPD^{(R)}$ - Technology. Data from devices made by $OVPD^{(R)}$ show comparable/ superior performance to those fabricated with conventional vacuum thermal evaporation (VTE) techniques. An outlook on further potentials of $OVPD^{(R)}$ with respect to enabling advanced organic device structures is given.

  • PDF

Electrical Characteristics of Bottom-Contact Organic Thin-Film-Transistors Inserting Adhesion Layer Fabricated by Vapor Deposition Polymerization and Ti Adhesion Metal Layer

  • Park, Il-Houng;Hyung, Gun-Woo;Choi, Hak-Bum;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.958-961
    • /
    • 2007
  • The electrical characteristics of organic thin-filmtransistor (OTFTs) can be improved by inserting adhesion layer on gate dielectrics. Adhesion layer was used as polymeric adhesion layer deposited on inorganic gate insulators such as silicon dioxide $(SiO_2)$ and it was formed by vapor deposition polymerization (VDP) instead of spin-coating process. The OTFTs obtained the on/off ratio $of{\sim}10^4$, threshold voltage of 1.8V, subthreshold slop of 2.9 V/decade and field effect mobility about $0.01\;cm^2/Vs$.

  • PDF

A Study on the Fabrication of P(VDF- TrFE) Organic Thin Films and Piezoelectric Characteristics (P(VDF-TrFE) 유기 박막의 제조와 압전특성에 관한 연구)

  • Park, Su-Hong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.395-399
    • /
    • 2008
  • The purpose of this paper is to investigate the fabrication of P(VDF-TrFE) organic thin films through the vapor deposition method and the piezoelectric properties of the organic thin films thus produced. Vapor deposition was performed under the following conditions: the working temperature, and the pressure of reaction chamber were $300^{\circ}C$, and $2.0{\times}10^{-5}$ Torr, respectively. The molecular structure and crystallinity of the evaporated organic thin films were evaluated by using a FT-IR (Fourier-Transform Infrared spectroscopy) and XRD (X-ray diffractometry), The results showed that crystallinity increased with an increase in the substrate temperature. When the P(VDF-TrFE) organic thin films were fabricated by increasing the substrate temperature, its piezoelectric coefficient($d_{33}$) increased.