• Title/Summary/Keyword: Organic semiconductor

Search Result 568, Processing Time 0.028 seconds

Structural and Electrical Properties of Aluminum Doped ZnO Electrodes Prepared by Atomic Layer Deposition for Application in Organic Solar Cells (유기태양전지 응용을 위한 원자층 증착 방식 제작의 알루미늄이 도핑 된 ZnO의 전기적, 구조적 특징)

  • Seo, Injun;Ryu, Sang Ouk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.1-5
    • /
    • 2014
  • Transparent and conducting aluminum-doped ZnO electrodes were fabricated by atomic layer deposition methods. The electrode showed the lowest resistivity of $5.73{\times}10^{-4}{\Omega}cm$ at a 2.5% cyclic layer deposition ratio of Trimethyl-aluminum and Diethyl-zinc chemicals. The electrodes showed minimum resistivity when deposited at a temperature of $225^{\circ}C$. The electrode also showed optical transmittance of about 92% at 300 nm. An organic solar cell made with a 300-nm-thick aluminum-doped ZnO electrode exhibited 2.0% power conversion efficiency.

Fabrication of Organic Thin Film for Flexible OLED Passivation and Its Characterization (플렉시블 OLED 패시베이션용 유기 박막 제작 및 특성)

  • Kim, Kwan-Do
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.93-96
    • /
    • 2020
  • Polyimide thin film was prepared by annealing the polyamic acid that was synthesized through co-deposition of diamine and dianhydride. The polyamic acid and polyimide thin film were characterized with FT-IR and HR FE-SEM. The average roughness of the film surface, evaluated with AFM, were 0.385 nm and 0.299 nm after co-deposition, and annealing at 120 ℃ respectively. OLED was passivated with the polyimide layer of 200 nm thickness. While the inorganic passivation layer enhances the WVTR of OLED, the organic passivation layer gives flexibility to the OLED. The in-situ passivation of OLED with organic thin film layer provides the leading technique to develop flexible OLED Display.

Organic thin-film transistors and transistor diodes with transfer-printed Au electrodes

  • Cho, Hyun-Duck;Lee, Min-Jung;Yoon, Hyun-Sik;Char, Kook-Heon;Kim, Yeon-Sang;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1122-1124
    • /
    • 2009
  • Organic thin-film transistors (OTFTs) were fabricated by using the transfer patterning method. In order to remove Au pattern easily, UV-curable polymer mold was surface treated. Au source/drain (S/D) pattern was transferred to insulator-coated substrate surface. Fabricated OTFTs were compared to OTFTs using vacuum-deposited Au S/D. Additionally, transistor diodes were characterized.

  • PDF

Interface Engineering in Quasi-Magnetic Tunnel Junctions with an Organic Barrier

  • Choi, Deung-Jang;Lee, Nyun-Jong;Kim, Tae-Hee
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.185-189
    • /
    • 2010
  • Spin polarized tunneling through a hybrid tunnel barrier of a Spin filter (SF) based on a EuO ferro-magnetic semiconductor and an organic semiconductor (OSC) (rubrene in this case) was investigated. For quasi-magnetic tunnel junction (MTJ) structures, such as Co/rubrene/EuO/Al, we observed a strong spin filtering effect of the EuO layer exhibiting I-V curves with high spin polarization (P) of up to 99% measured at 4 K. However, a magnetoresistance (MR) value of 9% was obtained at 4.2 K. The low MR compared to the high P could be attributed to spin scattering caused by structural defects at the interface between the EuO and rubrene, due to nonstoichiometry in the EuO.

Humidity Induced Defect Generation and Its Control during Organic Bottom Anti-reflective Coating in the Photo Lithography Process of Semiconductors

  • Mun, Seong-Yeol;Kang, Seong-Jun;Joung, Yang-Hee
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.295-299
    • /
    • 2012
  • Defect generation during organic bottom anti-reflective coating (BARC) in the photo lithography process is closely related to humidity control in the BARC coating unit. Defects are related to the water component due to the humidity and act as a blocking material for the etching process, resulting in an extreme pattern bridging in the subsequent BARC etching process of the poly etch step. In this paper, the lower limit for the humidity that should be stringently controlled for to prevent defect generation during BARC coating is proposed. Various images of defects are inspected using various inspection tools utilizing optical and electron beams. The mechanism for defect generation only in the specific BARC coating step is analyzed and explained. The BARC defect-induced gate pattern bridging mechanism in the lithography process is also well explained in this paper.

Reliability Evaluation of Atomic layer Deposited Polymer / Al2O3 Multilayer Film for Encapsulation and Barrier of OLEDs in High Humidity and Temperature Environments (OLED Barrier와 Encapsulation을 위한 원자층 증착 Polymer / Al2O3 다층 필름의 온습도 신뢰도 평가 분석)

  • Lee, Sayah;Song, Yoon Seog;Kim, Hyun;Ryu, Sang Ouk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.1-4
    • /
    • 2017
  • Encapsulation of organic based devices is essential issue due to easy deterioration of organic material by water vapor. Atomic layer deposition (ALD) is a promising solution because of its low temperature deposition and quality of the deposited film. Moisture permeation has a mechanism to pass through defects, Thin Film Encapsulation using inorganic / organic / inorganic hybrid film has been used as promising technology. $Al_2O_3$ / Polymer / $Al_2O_3$ multilayer film has shown excellent environmental protection characteristics despite of thin thicknesses of the films.

  • PDF

Stability of a QD-blended Organic Photodiode for X-ray Imaging (X-선 영상 취득을 위한 양자점 혼합 유기재료 광다이오드의 안정성에 관한 연구)

  • Lee, Jehoon;Kang, Jungwon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.15-18
    • /
    • 2017
  • In this study, we have studied the characteristics of the organic photodiode varying due to the blending conditions of the quantum dots (QDs). The active layer of the photodiode was formed with poly (3-hexylthiophene) and phenyl-C61-butyric acid methyl ester, and CdSe QDs with and without ZnS shell were blended in the active layer. The photodiode with CdSe/ZnS QDs showed the highest power conversion efficiency (PCE) and short-circuit current (Jsc). The performance change of the organic photodiode by X-ray irradiation was also measured. Regardless of X-ray irradiation conditions, the photodiode with CdSe/ZnS QDs showed better stability than other cases.

  • PDF

Deep-learning based In-situ Monitoring and Prediction System for the Organic Light Emitting Diode

  • Park, Il-Hoo;Cho, Hyeran;Kim, Gyu-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.126-129
    • /
    • 2020
  • We introduce a lifetime assessment technique using deep learning algorithm with complex electrical parameters such as resistivity, permittivity, impedance parameters as integrated indicators for predicting the degradation of the organic molecules. The evaluation system consists of fully automated in-situ measurement system and multiple layer perceptron learning system with five hidden layers and 1011 perceptra in each layer. Prediction accuracies are calculated and compared depending on the physical feature, learning hyperparameters. 62.5% of full time-series data are used for training and its prediction accuracy is estimated as r-square value of 0.99. Remaining 37.5% of the data are used for testing with prediction accuracy of 0.95. With k-fold cross-validation, the stability to the instantaneous changes in the measured data is also improved.

The Effects of Organic Contamination and Surface Roughness on Cylindrical Capacitors of DRAM during Wet Cleaning Process

  • Ahn, Young-Ki;Ahn, Duk-Min;Yang, Ji-Chul;Kulkarni, Atul;Choi, Hoo-Mi;Kim, Tae-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.15-19
    • /
    • 2011
  • The performance of the DRAM is strongly dependent on the purity and surface roughness of the TIT (TiN/Insulator/ TiN) capacitor electrodes. Hence, in the present study, we evaluate the effects of organic contamination and change of surface roughness on the cylindrical TIT capacitor electrodes during the wet cleaning process by various analytical techniques such as TDMS, AFM, XRD and V-SEM. Once the sacrificial oxide and PR (Photo Resist) are removed by HF, the organic contamination and surface oxide films on the bottom Ti/TiN electrode become visible. With prolonged HF process, the surface roughness of the electrode is increased, whereas the amount of oxidized Ti/TiN is reduced due to the HF chemicals. In the 80nm DRAM device fabrication, the organic contamination of the cylindrical TIT capacitor may cause defects like SBD (Storage node Bridge Defect). The SBD fail bit portion is increased as the surface roughness is increased by HF chemicals reactions.

Photovoltaic Effects in Organic Semiconductor $CuPc/C_{60}$ depending on Cathodes ($CuPc/C_{60}$ 구조 유기 반도체에서의 음전극의 종류에 따른 광기전 효과 연구)

  • Oh, Hyun-Seok;Jang, Kyung-Wook;Lee, Sung-Ill;Lee, Joon-Ung;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.181-184
    • /
    • 2004
  • Organic semiconductors have attracted considerable attention due to their interesting physical properties followed by various technological applications in the area of electronics and opto-electronics. It has been a long time since organic solar cells were expected as a low-cost high-energy conversion device. Although practical use of them has not been achieved, technological progress continues. Morphology of the materials, organic/inorganic interface, metal cathodes, molecular packing and structural properties of the donor and acceptor layers are essential for photovoltaic response. We have fabricated solar-cell devices based on copper-phthalocyanine(CuPc) as a donor(D) and fullerene($C_{60}$) as an electron acceptor(A) with doped charge transport layers, and BCP as an exciton blocking layer(EBL). We have measured photovoltaic characteristics of the solar-cell devices using the xenon lamp as a light source.

  • PDF