• Title/Summary/Keyword: Organic reaction in water

Search Result 449, Processing Time 0.026 seconds

Study for Organic(Bio)-Inorganic Nano-Hybrid OMC

  • Lee, Jung-Eun;Ji, Hong-Geun;Park, Yoon-Chang;Lee, Kyoung-Chul;Yoo, Eun-Ah
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.178-191
    • /
    • 2003
  • OMC is essentialiy necessary compound in sun goods as organic UV protecting products. But the skin-trouble problem is raising because of skin penetration of OMC. In this study, non-capsulated pure OMC was compared with Organic-Inorganic-Nano-hybrid OMC for skin penetration force and SPF degree. Organic- Inorganic Nano-Hybrid OMC is OMC trapped in the pore of the mesoporous silica synthesized by the sol-gel method after OMC is nanoemulsified in the system of the hydrogenated Lecithin/ Ethanol/caprylic/capric triglyceride/OMC/water. OMC- nano- emulsion was obtained by a microfluidizing process at 1000bar and then micelle size in the nanoemulsion solution is 100-200nm range. Mesoporous silica nano-hybrid OMC was prepared by the process; surfactant was added in dissolved OMC-Nanoemulsion, then the rod Micelle was formed. OMC-nanoemulsion was capsulated in this rod Micelle and then silica precursor was added in the OMC-nanoemulsion solution. Through the hydrolysis reaction of the silica precursor, mesoporous silica concluding OMC-Nanocapsulation was obtained. The nano-hybrid surface of this OMC-Nanoemulsion-Inorganic system was treated with polyalkyl-silane compound. OMC-Mesoporous silica Nano-hybrids coated with polyalkyl-silane compound show the higher sun protecting factor (SPF Analyzer: INDEX 10-15) than pure OMC and could reduce a skin penetration of OMC. The physico-chemical properties of these nano-hybrids measured on the SPF index, partical size, strcture, specific surface area, pore size, morphology, UV absorption, rate of the OMC dissolution using SPF Analyzer, Laser light scattering system, XRD, BET, SEM, chroma Meter, HPLC, Image analyzer, microfluidizer, UV/VIS. spectrometer.

  • PDF

Preparation of Silica-Filled SBR Compounds with Low Rolling Resistance by Wet Masterbatch

  • Yang, Jae-Kyoung;Park, Wonhyeong;Ryu, Changseok;Kim, Sun Jung;Kim, Doil;Seo, Gon
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.26-39
    • /
    • 2020
  • The physical properties of silica-filled SBR compounds (WSBR) prepared using silica-SBR wet masterbatches (WMB) were systematically investigated to understand the effect of the surface treatment of silica on the reinforcement performance of SBR. Treatment of silica with bis(triethoxysilylpropyl)tetrasulfide (TESPT) in the liquid phase, followed by mixing with an SBR solution and recovery by water stripping, easily produced silica-SBR WMB. However, insufficient surface treatment in terms of the amount and stability of the incorporated TESPT led to considerable silica loss and inevitable TESPT elution. Pretreatment of silica in the gas phase with TESPT and another organic material that enabled the formation of organic networks among the silica particles on the surface provided hydrophobated silica, which could be used to produce silica-SBR WMB, in high yields of above 99%. The amount and type of organic material incorporated into silica greatly influenced the cure characteristics, processability, and tensile and dynamic properties of the WSBR compounds. The TESPT and organic material stably incorporated into silica increased their viscosity, while the organic networks dispersed on the silica surface were highly beneficial for reducing their rolling resistance. Excessive dosing of TESTP induced low viscosity and a high modulus. The presence of connection bonds formed by the reaction of glycidyloxy groups with amine groups on the silica surface resulted in physical entanglement of the rubber chains with the bonds in the WSBR compounds, leading to low rolling resistance without sacrificing the mechanical properties. Mixing of the hydrophobated silica with a rubber solution in the liquid phase improved the silica dispersion of WSBR compounds, as confirmed by their low Payne effect, and preservation of the low modulus enhanced the degree of entanglement.

Characteristics of Thermophilic Methane Fermentation Using the Organic Wastes (유기성 폐기물을 이용한 고온 메탄 발효의 특성)

  • Kim, Nam-Cheon;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.29-37
    • /
    • 2008
  • In this work, it was investigated that various aspects of process, application situation, merits and short-coming results of the thermophilic methane fermentation with highly concentrated organic waste substances such as sewage sludges, food wastes and excretions. The merits of this methane fermentation were that it had a very fast reaction rate and was possible to proceed in high loads. It was also high in mortality for pathogenic microorganism and the digested sludge was more hygienic. However, the short-comings were that more energy was required for heating in the fermentation facility, no surplus energy could be gained from low concentration of organic waste, the fermentation treatment dropped level of water quality, thus burdens discharging process of water. Especially, the high concentration of methane fermentation could possibly lack nutritious salt and could face the disturbance by ${NH_4}^+-N$, a proper alternative was required. In general, thermophilic methane fermentation was considered as a better mean in disposing of cow excretion and food waste which were highly concentrated organic wastes. On the other hand, under the condition where the concentration of waste material was low and the high concentrate waste material became higher than 3,000 mg/L in ${NH_4}^+-N$, thermophilic methane fermentation resulted less desirable outcome.

  • PDF

Change of Surface Morphology with the Spreading Rate of Organic Solution During Interfacial Polymerization for Polyamide-based Thin Film Composite Membrane Manufacturing Process (폴리아마이드계 박막복합막 제조 공정에서 계면중합의 유기용액 퍼짐 속도에 따른 표면 모폴로지의 변화)

  • Park, Chul Ho
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.506-510
    • /
    • 2017
  • The interfacial polymerization method has been applied to various fields as a reaction in which reactive monomers dissolved in two immiscible solutions cause polymerization at the interface. In the case of water treatment membranes, m-phenylene diamine and trimesoyl chloride are used as reactants. The performance of the membrane is affected by various polymerization factors. In this study, we investigated how the spreading rate of the organic solution influences the surface and structure of the membrane. Spreading rate of organic solutions was adjusted to 7.6 and 25 mm/sec. The solution volume of the organic phase was adjusted to 1~3 drops. The observed results showed that cracks were not found in the polyamide membrane when dropping at a drop of 7.6 mm/sec and dropping two drops at 25 mm/sec. On the other hand, cracks occurred in all cases. Therefore, the spreading rate of the initial organic solvent is expected to greatly affect the performance of the polyamide membrane.

Synthesis of nickel fine powder in the mixed solvent of water and ethanol and ie oxidation behaviors (물과 에탄올의 혼합용매로부터 니켈 미분말의 합성 및 산화특성)

  • 이상근;최은영;이윤복;김광호;박희찬
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.3
    • /
    • pp.139-144
    • /
    • 2003
  • Nickel fine powders were prepared from nickel chloride aqueous solution containing ethanol as an organic solvent, and their oxidation behaviors were investigated. The reduction reaction by hydrazine from nickel chloride aqueous solution containing ethanol depend on reaction temperature. The reduction reaction time by hydrazine decreased with the increase of reaction temperature. By controlling reaction temperature, the products could be obtained spherical particles in the range of 0.1 $\mu\textrm{m}$~1.0 $\mu\textrm{m}$. Also, As reaction temperature increased from $40^{\circ}C$ to $80^{\circ}C$, the particle size slightly increased and had a broad size distribution owing to the presence of the coarse particles. The mean particle size and specific surface area of nickel powders prepared at $60^{\circ}C$ were 0.3 $\mu\textrm{m}$ and 31.8 $\m^2$/g, respectively. Weight loss of the powders at $300^{\circ}C$ was due to composition of $_Ni(OH)2$. In case of heat treatment at $200^{\circ}C$ in air, oxidation resistance of nickel powders was remarkable than that of as-synthesized.

Occurrence of Disinfection By-Products and Distribution in Drinking Water

  • In, Chi-Kyung;Lee, Jung-Ho;Lee, In-Sook
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.12a
    • /
    • pp.103-114
    • /
    • 2005
  • Chlorine disinfection has been used in drinking water supply to disinfect the water-borne microbial disease which may cause to serious human disease. As Chlorination is still the least costly, relatively easy to use, chlorination is the primary means to disinfect portable water supplies and control bacterial growth in the distribution system. However, chlorine also reacts with natural organic matter (NOM), which presents in nearly all water sources, and then produces disinfection by-product (DBps), which may have adverse health effects. Although the existent DBPs have been reported in drinking water supplies, it is not feasible to predict the levels of the various DBPs due to the complex chemistry reaction involved. The objectives of this study were to investigate seasonal variation of DBPs formation and difference of DBPs concentration in the plant to tap water. The average concentration of THMs was 20.04 ${\mu}g/{\ell}$, HAAs 8-15 ${\mu}g/{\ell}$, HANs 2-4.5 ${\mu}g/{\ell}$ respectively. Distant variation of DBPs formation is that THMs concentration increase by 17% at 2 km point from the plant and by 28% at 7 km and HAAs, HANs also increase each by 16%, 32%, at 2 km from the plant and 35%, 56%, at 7 km. DBPs increase in water supply pipe continually. The seasonal occurrence of DBPs is that in May and August DBPs concentration is very high then in March, in May DBPs concentration is highest. The temperature is main factor of DBPs formation, precursor also. Precursor which was accumulated for winter flowed into the raw water by flooding in spring and summer and produced DBPs. Therefore for the supply of secure drinking water, it is required to protect precursor of flowing into raw water and to add to BCAA and DBAA to drinking water standards.

  • PDF

Gasoline Desulfurization by Catalytic Alkylation over Methanesulfonic Acid

  • Wu, Xiaolin;Bai, Yunpeng;Tian, Ying;Meng, Xuan;Shi, Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3055-3058
    • /
    • 2013
  • Methanesulfonic acid (MSA) was used as catalyst to remove trace organic sulfur (thiophene) from Fluid Catalytic Cracking gasoline (FCC) via alkylation with olefins. The reactions were conducted in Erlenmeyer flask equipped with a water-bath under atmospheric pressure. The influence of the temperature, the reaction time, and the mass ration of MSA were investigated. After a 60 min reaction time at 343 K, the thiophene conversion of 98.7% was obtained with a mass ration of MSA to oil of 10%. The catalyst was reused without a reactivation treatment, and the thiophene conversion reached 92.9% at the third time. The method represents an environmentally benign route to desulfur, because MSA could easily be separated from the reaction mixture via decantation and it could be reused.

Production Behavior of Amino Acid from High Temperature and High Pressure Water Reaction of Fish Entrails (고온고압수 반응을 이용한 생선내장의 아미노산 생성거동)

  • 강길윤;전병수
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.495-499
    • /
    • 2003
  • The effect of operating parameters (reaction temperature and time) and reaction modes (batch and semi-batch) on the behavior of amino acid production from hydrothermal decomposition of fish-derived wastes was investigated. The amino acids obtained in batch experiments at temperature of 250$^{\circ}C$ were mainly alanine (Ala) and glycine (Gly) at maximum yield of 65 and 28mg/g-dry fish, respectively. At relatively lower temperature of 200$^{\circ}C$, the yield of high-molecular-weight amino acids such as aspartic acid (Asp) and serine (Ser) is high, but decreases as temperature increases. It is likely that high-molecular-weight amino acids decompose faster than low-molecular ones. Semi-batch mode of reaction suppressed decomposition of amino acids into organic acids (or volatile materials) by continuously removing the products from the reaction zone as soon as they are formed. Thus, large amount of high-molecular-weight amino acids such as Asp and Ser at this reaction mode was observed.

A Study on the Stream Pollution Analysis (하천오염분석에 관한 연구)

  • 김건흥
    • Water for future
    • /
    • v.19 no.4
    • /
    • pp.321-328
    • /
    • 1986
  • Bottom sediment-river water samples were studied to determine the extent of biodegradable matter and to examine the reduction of COD, TKN and TOC by using of warburg and aerated batch reactor. Warburg studies were conducted to study the Oxygen Uptake Rates, Reaction Rate Constants and CBOD. Bacth reator studies were conducted to determine the reduction of COD, TKN and TOC. Results from the batch recator study indicate high concentration of COD in samples. Less than 10 precent of the Organic Carbon was found to be biodegradable in 48 hours of Warburg experiment. Appreciable Immediate Oxygen Demand of sediments suggests that dredging of the river bottom is likely to deplete dissolved significantly in the river water.

  • PDF

Pbotocatalysis decomposition of TCE in water phase with recirculation photoreactor (Recirculation 광촉매 화학 반응기를 이용한 액상 TCE 분해)

  • 이태규;김동형;조덕기;조서현;오정무
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.05a
    • /
    • pp.33-41
    • /
    • 1993
  • The objectives of this experiment performed were to determine the potential using of solar radiation to destroy organic contaminants in water by photolysis and to develop the process and improve its performance. We used lab, scale of recirculation photoreactor with 30, 50, 80ppm initial concentration of TCE and Ti $O_2$ anatase, respectively. Adsorption constant, reaction constant were obtained and compared using the Langmuir-Hinshelwood kinetics equation. Ti $O_2$ anatase demonstrated the highest conversion ratio co TCE among Ti $O_2$ anatase, ZnO and F $e_2$ $O_3$ in this experiment. It was shown that in case of two component system, TCE+ phenol, as the concentration of phenol increased in the feed solution, TCE decomposition rate decreased.

  • PDF