Production Behavior of Amino Acid from High Temperature and High Pressure Water Reaction of Fish Entrails

고온고압수 반응을 이용한 생선내장의 아미노산 생성거동

  • 강길윤 (부경대학교 식품생명공학부 수산식품연구소) ;
  • 전병수 (부경대학교 식품생명공학부 수산식품연구소)
  • Published : 2003.12.01

Abstract

The effect of operating parameters (reaction temperature and time) and reaction modes (batch and semi-batch) on the behavior of amino acid production from hydrothermal decomposition of fish-derived wastes was investigated. The amino acids obtained in batch experiments at temperature of 250$^{\circ}C$ were mainly alanine (Ala) and glycine (Gly) at maximum yield of 65 and 28mg/g-dry fish, respectively. At relatively lower temperature of 200$^{\circ}C$, the yield of high-molecular-weight amino acids such as aspartic acid (Asp) and serine (Ser) is high, but decreases as temperature increases. It is likely that high-molecular-weight amino acids decompose faster than low-molecular ones. Semi-batch mode of reaction suppressed decomposition of amino acids into organic acids (or volatile materials) by continuously removing the products from the reaction zone as soon as they are formed. Thus, large amount of high-molecular-weight amino acids such as Asp and Ser at this reaction mode was observed.

고온고압수 반응에 의해 생선 내장으로부터 아미노산의 생성거동을 검토하기 위하여 회분식 및 반회분식 반응조작을 행하였으며 그 결과 다음과 같은 결론을 얻을 수 있었다. 25$0^{\circ}C$, 반응시간 60분에서 회분식 반응조작을 통해 얻었던 최적수율 (137nmg/g-dry fish)과 비교하여 상대적으로 고온인 30$0^{\circ}C$, 2분의 반회분식 조작결과 보다 높은 수율 (230mg/g-dry fish)의 개선을 가져올 수 있었다. 또한 회분식 반응조작에서는 Ala, Gly과 같은 비교적 저분자량의 아미노산 생성이 지배적이었으며 반회분식 조작에서는 Ser, Asp과 같은 고분자량의 아미노산 생성이 촉진되었다. 이와 관련하여 반응 생성물의 조성은 각 반응조작 (회분식 및 반회분식)에 의존하는 것을 알 수 있었다 이상의 결과를 토대로 생선 폐기물로부터 아미노산의 생성을 위한 고온고압수 처리공정은 회분식 반응조작에서 얻을 수 있었던 최적온도보다 상대적으로 높은 온도 및 단시간 반응에서 조작되어져야 한다는 것을 알 수 있었으며 특정 아미노산의 수율을 향상시키기 위해서는 보다 정확한 반응조작의 검토가 필요한 것으로 사료된다.

Keywords

References

  1. Chem. Rev. v.99 Organic chemical reactions in supercritical water Savage,P.E. https://doi.org/10.1021/cr9700989
  2. AIChE J. v.41 Reactions at supercritical conditions: applications and fundamentals Savage,P.E.;S.Gopalan;T.I.Mizan;C.J.Martino;E.E.Brock https://doi.org/10.1002/aic.690410712
  3. Ind. Eng. Chem. Res. v.38 Oxidation and Thermolysis of methoxy-, nitro-, and hydroxy-substituted phenols in supercritical water Martino,J.C.;P.E.Savage https://doi.org/10.1021/ie9805741
  4. Ind. Eng. Chem. Res. v.38 Catalytic supercritical water oxidation of pyridine: comparison of catalysts Aki,S.;M.A.Abraham https://doi.org/10.1021/ie980485o
  5. Ind. Eng. Chem. Res. v.38 A kinetic study of methanol oxidation in supercritical water Anitescu,G.;Z.Zang;L.L.Tavlarides https://doi.org/10.1021/ie980610w
  6. J. Chem. Eng. Japan v.30 Decomposition of municipal sludge by supercritical water oxidation Goto,M.;T.Nada;S.Kawajiri;A.Kodama https://doi.org/10.1252/jcej.30.813
  7. Chem. Eng. News. v.12 Supercritical water: a medium for chemistry Shaw,R.W.;T.B.Brill;A.A.Clifford;C.A.Eckert;E.U.Franck
  8. Kagaku Kogaku Ronbunsho v.23 Recovery of terepthalic acid by decomposition of PET in supercritical water Adschiri,T.;O.Sato;K.Machida;N.Saito;K.Arai https://doi.org/10.1252/kakoronbunshu.23.505
  9. J. Supercrit. Fluids v.13 Cellulose hydrolysis in subcritical and supercritical water Sasaki,M.;B.Kabyemela;R.Malaluan;S.Hirose;N.Takeda;T.Adschiri;K.Arai https://doi.org/10.1016/S0896-8446(98)00060-6
  10. Kagaku Kougyou v.50 Production of organic acids and amino acids from fish meat by subcritical water hydrolysis Yoshida,H.;M.Terashima;Y.Takahashi
  11. Can. J. Chem. Eng. v.79 Optimization of amino acids production from waste fish entrails by hydrolysis in sub- and supercritical water Kang,K.;A.T.Quitain;H.Daimon;R.Noda;N.Goto;H.Hu;K.Fujie https://doi.org/10.1002/cjce.5450790110
  12. J. Chem. Eng. Japan v.34 Development of marine waste recycling technologies using sub- and supercritical water Daimon,H.;K.Kang;N.Sato;K.Hujie https://doi.org/10.1252/jcej.34.1091
  13. Fluid Phase Equilibria v.158;159;160 Importance of phenol equilibria for understanding supercritical fluid environments Arai,K.;T.Adschiri
  14. AIChE J. v.41 Glucose hydrolysis and oxidation in supercritical water Holgate,H.R.;J.C.Meyer;J.W.Tester https://doi.org/10.1002/aic.690410320