• Title/Summary/Keyword: Organic photovoltaic

Search Result 203, Processing Time 0.048 seconds

Carbon nanomaterials in organic photovoltaic cells

  • Kim, Tae-Hoon;Yang, Seung-Jae;Park, Chong-Rae
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.194-206
    • /
    • 2011
  • Carbon nanomaterials in organic photovoltaic (OPV) cells have attracted a great deal of interest for the development of high-efficiency, flexible, and low-cost solar cells. Due to the complicated structure of OPV devices, the electrical properties and dispersion behavior of the carbon nanomaterials should be controlled carefully in order for them to be used as materials in OPV devices. In this paper, a fundamental theory of the electrical properties and dispersion behavior of carbon nanomaterials is reviewed. Based on this review, a state-of-the-art OPV device composed of carbon nanomaterials, along with issues related to such devices, are discussed.

Optical Simulation of Transparent Electrode for Application to Organic Photovoltaic Cells

  • Jo, Se-Hui;Yang, Jeong-Do;Park, Dong-Hui;Wi, Chang-Hwan;Choe, Won-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.440-440
    • /
    • 2012
  • The optical characteristics of transparent electrode with various kind of materials and thickness to be used for organic photovoltaic cells were studied by simulation methodology. It demonstrated that the transmittance varies with the kinds of materials, the number of layers and change in the thickness of each layer. In the case of the structure composed of dielectric/Ag/dielectric, optimized transmittance was higher than 90% at 550 nm and the thickness of the Ag layer was ~10nm. Top and bottom dielectric materials can be changed with different refractive index and extinction coefficient. The relation between the optical transmittance of device and transparent electrode with different refractive indices was discussed as well. By processing numerical simulations, an optimized optical transmittance can be obtained by tunning the thickness and materials of transparent electrode.

  • PDF

Photovoltaic Properties of Organic Solar Cell using Zinc phthalocyanine(ZnPC)/$C_{60}$ devices (Zinc phthalocyanine(ZnPC)/$C_{60}$ 소자를 이용한 유기 광소자의 광기전특성)

  • Lee, Ho-Sik;Hur, Sung-Woo;Oh, Hyun-Seok;Jang, Kyung-Uk;Lee, Joon-Ung;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.31-34
    • /
    • 2004
  • During the last 20 years organic semiconductors have attracted considerable attention due to their interesting physical properties followed by various technological applications in the area of electronics and opto-electronics. It has been a long time since organic solar cells were expected as a low-cost energy-conversion device. Although practical use of them has not been achieved, technological progress continues. Morphology of the materials, organic/inorganic interface, metal cathodes, molecular packing and structural properties of the donor and acceptor layers are essential for photovoltaic response. We have fabricated solar cell devices based on zinc-phthalocyanine(ZnPc) as donor(D) and fullerine$(C_{60})$ as electron acceptor(A) with doped charge transport layers, $Alq_3$ as an electron transport or injection layer. We observed the photovoltaic characteristics of the solar celt devices using the Xe lamp as a light source.

  • PDF

Properties in Organic Photovoltaic Cell Depending on the Exciton Blocking Layer Thickness (엑시톤 억제층 두께에 따른 유기 광기전력 소자의 특성)

  • Oh, Hyun-Seok;Lee, Joon-Ung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1148-1151
    • /
    • 2005
  • Photovoltaic effects in organic solar cell were studied in a cell configuration of ITO/PEDOT:PSS/CuPc(20 nm)/$C_{60}$(40 nm)/BCP/Al(150 nm) at room temperature. Here, the BCP layer works as an exciton blocking layer. The exciton blocking layer must transport electrons from the acceptor layer to the metal cathode with minimal increase in the total cell series resistance and should absorb damage during cathode deposition. Therefore, a proper thickness of the exciton blocking layer is required for an optimized photovoltaic cell. Several thicknesses of BCP were made between $C_{60}$ and Al. And we obtained characteristic parameters such as short-circuit current, open-circuit voltage, and power conversion efficiency of the device under the illumination of AM 1.5.

Properties of the Exciton Blocking Layer with BCP in Organic Photovoltaic cell (BCP를 엑시톤 억제층으로 사용한 유기 광기전력 소자의 특성)

  • Oh, Hyun-Seok;Lee, Joon-Ung;Lee, Won-Jae;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.273-274
    • /
    • 2005
  • Photovoltaic effects in organic solar cell were studied in a cell configuration of ITO/PEDOT:PSS/CuPc(20nm)/$C_{60}$(40nm)/BCP/Al(150nm) at room temperature. Here, the BCP layer works as an exciton blocking layer. The exciton blocking layer must transport electrons from the acceptor layer to the metal cathode with minimal increase in the total cell series resistance and should absorb damage during cathode deposition. Therefore, a proper thickness of the exciton blocking layer is required for an optimized photovoltaic cell. Several thicknesses of BCP were made between $C_{60}$ and Al. And we obtained characteristic parameters such as short-circuit current, open-circuit voltage, and power conversion efficiency of the device under the illumination of AM 1.5.

  • PDF

Performance Comparison of CuPc, Tetracene, Pentacene-based Photovoltaic Cells with PIN Structures

  • Hwang, Jong-Won;Kang, Yong-Su;Park, Seong-Hui;Lee, Hye-Hyun;Jo, Young-Ran;Choe, Young-Son
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.311-312
    • /
    • 2010
  • The fabricated photovoltaic cells based on PIN heterojunctions, in this study, have a structure of ITO/poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)/donor/donor:C60(10nm)/C60(35nm)/2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline(8nm)/Al(100nm). The thicknesses of an active layer(donor:C60), an electron transport layer(C60), and hole/exciton blocking layer(BCP) were fixed in the organic photovoltaic cells. We investigated the performance characteristics of the PIN organic photovoltaic cells with copper phthalocyanine(CuPc), tetracene and pentacene as a hole transport layer. Discussion on the photovoltaic cells with CuPc, tetracene and pentacene as a hole transport layer is focussed on the dependency of the power conversion efficiency on the deposition rate and thickness of hole transport layer. The device performance characteristics are elucidated from open-circuit-voltage(Voc), short-circuit-current(Jsc), fill factor(FF), and power conversion efficiency($\eta$). As the deposition rate of donor is reduced, the power conversion efficiency is enhanced by increased short-circuit-current(Jsc). The CuPc-based PIN photovoltaic cell has the limited dependency of power conversion efficiency on the thickness of hole transport layer because of relatively short exciton diffusion length. The photovoltaic cell using tetracene as a hole transport layer, which has relatively long diffusion length, has low efficiency. The maximum power conversion efficiencies of CuPc, tetracene, and pentacene-based photovoltaic cells with optimized deposition rate and thickness of hole transport layer have been achieved to 1.63%, 1.33% and 2.15%, respectively. The photovoltaic cell using pentacene as a hole transport layer showed the highest efficiency because of dramatically enhanced Jsc due to long diffusion length and strong thickness dependence.

  • PDF

Synthesis and Photovoltaic Properties of Organic Photosensitizers for Application of Dye Sensitized Solar Cells (페노시아진을 이용한 염료감응형 태양전지 고효율 염료합성)

  • Yang, Hyun Sik;Shin, So Yeon;Kim, Yeun Ji;Kim, Jae Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.119.2-119.2
    • /
    • 2011
  • Dye-sensitized solar cells (DSSC) are currently attracting wide spread academic and commercial interest for the conversion of sunlight into electricity because of their easy manufacturing process and high efficiency. The solar energy conversion efficiencies of DSSC are strongly dependent on dye molecules adsorbed on the TiO2 surface which used for photosensitization of sun light, since an excited state of dye could inject an electron into the conduction band of semiconductor. We have developed novel organic dyes which have phenothiazine moieties as an electron donor in their charge-transfer chromophore for application of DSSCs. We had synthesized a series of phenothiazine derivatives which have different wave length absorbing chromophore in the molecule with high molar extinction coefficient. The photovoltaic performance of DSSC composed of organic chromophores with broad wavelength absorption property were measured and evaluated by comparison with that of pristine ruthenium dye.

  • PDF

Interfacial Engineering Strategies for Third-Generation Photovoltaics (차세대 태양전지의 계면 개질 전략)

  • Lim, Hunhee;Choi, Min-Jae;Jung, Yeon Sik
    • Current Photovoltaic Research
    • /
    • v.4 no.3
    • /
    • pp.98-107
    • /
    • 2016
  • Third-generation photovoltaics are of low cost based on solution processes and are targeting a high efficiency. To meet the commercial demand, however, significant improvements of both efficiency and stability are required. In this sense, interfacial engineering can be useful key to solve these issues because trap sites and interfacial energy barrier and/or chemical instability at organic/organic and organic/inorganic interfaces are critical factors of efficiency and stability degradation. Here, we thoroughly review the interfacial engineering strategies applicable to three representative third-generation photovoltaics - organic, perovskite, colloidal quantum dot solar cell devices.

Photovoltaic Properties of Organic Solar Cell using Zinc phthalocyanine(ZnPc)/$C_{60}$ devices (Zinc phthalocyanine(ZnPc)/$C_(60)$ 소자를 이용한 유기 광소자의 광기전특성)

  • Lee, Ho-Sik;Hur, Sung-Woo;Lee, Won-Jae;Shin, Hoon-Kyu;Kim, Tae-Wan;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1712-1714
    • /
    • 2004
  • During the last 20 years organic semiconductors have attracted considerable attention due to their interesting physical properties followed by various technological applications in the area of electronics and opto-electronics. It has been a long time since organic solar cells were expected as a low-cost energy-conversion device. Although practical use of them has not been achieved, technological progress continues. Morphology of the materials, organic/inorganic interface, metal cathodes, molecular packing and structural properties of the donor and acceptor layers are essential for photovoltaic response. We have fabricated solar cell devices based on zinc-phthalocyanine(ZnPc) as donor(D) and fullerine($C_{60}$) as electron acceptor(A) with doped charge transport layers, $Alq_3$ as an electron transport or injection layer. We observed the photovoltaic characteristics of the solar cell devices using the Xe lamp as a light source.

  • PDF

Effects of $O_2$ Plasma Treatment on the Electrical Properties of Organic Photovoltaic Cell (유기 광기전 소자의 전기적 특성에 미치는 산소 플라즈마 처리의 영향)

  • Oh, Dong-Hoon;Lee, Young-Sang;Park, Hee-Doo;Shin, Jong-Yeol;Kim, Tae-Wan;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1463-1464
    • /
    • 2011
  • An indium thin oxide(ITO) is used as a substrate material for organic light-emitting diodes(OLEDs) and organic photovoltaic cells. This study examined the effects of an $O_2$ plasma treatment on the electrical properties of an organic photovoltaic cell. The four probe method and Atomic force microscope(AFM) revealed the lowest surface resistance at the plasma treatment intensity of 250 [W] and the lowest average surface roughness of 2.0 [nm] at 250 [W]. The lowest average resistance of 17 [${\Omega}$/sq] was also observed at 250 [W] 40 [sec]. The $O_2$ plasma treatment device and a basic device in a structure of CuPc/C60/BCP/Al on ITO glass were fabricated by thermal evaporation, respectively. When the $O_2$ plasma treatment was used to the ITO, The experimental results revealed that the power conversion efficiency(PCE) indicated 65 [%] higher in the PCE than that without the plasma treatment.

  • PDF