• Title/Summary/Keyword: Organic material removal

Search Result 184, Processing Time 0.03 seconds

Characteristics of Bacterial Community for Biological Activated Carbon(BAC) by Culturable and Unculturable Methods. (배양적 및 비배양적 방법에 의한 생물활성탄 부착세균 군집 특성)

  • Park, Hong-Ki;Jung, Eun-Young;Jung, Mi-Eun;Jung, Jong-Moon;Ji, Ki-Won;Yu, Pyung-Jong
    • Journal of Life Science
    • /
    • v.17 no.9 s.89
    • /
    • pp.1284-1289
    • /
    • 2007
  • The Biological Activated Carbon (BAC) process in the water treatments represents a kind of biofiltration process which capabilities of bacteria to remove organic matters are maximized. It enables to eliminate organic matters and effectively reduce microbial regrowth potentials. As attached bacteria employ natural organic matter as a substrate, they are significantly dependent on indigenous microorganisms. In this study, characteristics of bacterial community by culturable and unculturable Methods have been conducted in a pilot plant using SAC in water treatment process at the downstream of the Nakdong River. Based on the results, HPC and bacterial- production for coal-based activated carbon material were $1.20{\sim}56.2{\times}l0^7$ cfu/g and $1.2{\sim}3.7\;mgC/m^{3}h$, respectively, in the SAC process. The highest level of attached bacteria biomass and organic carbon removal efficiency was found in the coal-based activated carbon. The genera Pseudomonas, Flavobacterium, Alcaligenes, Acilzetobacter, and Spingomonas were identified for each activated carbon material. Pseudomonas vesicularis was the dominant species in the coconut- and coal-based materials, where as Pseudomonas cepacia was the dominant species in the wood-based material. The Scanning Electron Microscope (SEM) observation of the activated carbon surface also found the widespread distribution of rod form and coccus. The community of attached bacteria was investigated by performing Fluorescent in situ hybridization (FISH) analysis. a group was dominant in coal, wood and coccunt-based materials, ${\alpha},\;{\beta}\;and\;{\gamma}$ group ranged from 27.0 ${\sim}$ 43.0%, 7.1 ${\sim}$ 22.0%, 11.3 ${\sim}$ 28.6%, respectively. These results suggest that a group bacterial community appears to be regulated removal efficiency of organic material in water treatment process.

Synthesis and characterization of noble metal coupled N-TiO2 nanoparticles

  • Lee, Kyusang;Moon, Jiyeon;Kim, Seonmin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.374.2-374.2
    • /
    • 2016
  • Volatile organic compounds (VOCs) in the atmosphere are harmful materials which influence indoor air environment and human health. Titanium dioxide ($TiO_2$) is photocatalyst extensively used in degradation of organic compound. To improve the photocatalytic activity in the visible light region, doping with non-metals element or loading noble metals on the surface of $TiO_2$ is generally proposed. In this study, N- doped $TiO_2$ having photocatalytic activity in visible light region was attached noble metal such as Pt, Ag, Pd, Au by coupling method. Catalytic activities of Noble metal coupled $N-TiO_2$ powders were evaluated by the improvement of their photocatalytic activities and the degradation of VOC gas. A UV-Vis spectrophotometer was used to measure the diffuse reflectance spectra of coupled $N-TiO_2$ sample. The photocatlytic activities of as prepared samples were characterized by the decoloration of aqueous MB solution under Xenon light source (UV and visible light). To measure of decomposition VOCs, ethylbenzene was selected for target VOC material and the concentration was monitored under UVLED irradiation in a closed chamber system. Adjusting the initial concentration of 10~12 ppm, to evaluate the removal characteristics by using the coupled $N-TiO_2$.

  • PDF

Fabrication and organic gas response characteristics of the copolymer LB films (공중합체 LB막의 제작과 유기가스 반응 특성)

  • 신훈규;최용성;장정수;권영수
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.180-187
    • /
    • 1996
  • The use of preformed copolymers and their cross-linking have been attempted in order to improve the intrinsic fragility of monolayers and Langmuir-Blodgett (LB) films and to make their technological applications. It has shown that an imidization followed a polyion-complexation can stabilize the LB films against heat and solvents. And, when the polymer structure was properly designed, concurrent removal of the alkyl tails together with imide formation could be accomplished. In this paper, the monolayers of the polymers which were polyion-complexed with PAA at the air-water interface can be transferred onto solid substrates such as porous fluorocarbon membranes filter and quartz crystal microbalance. The properties of the monolayers and the LB films will be discussed by .pi.-A isotherms, FT-IR, DSC, deposition ratio, QCM, and SEM. In addition, it was attempted to investigate the response characteristics of polymer LB films to the organic gases by the use of QCM.

  • PDF

Effects of the Surfactant and the Quaternary Ammonium Functional Groups on the Removal of Perrhenate Anions using Mesoporous Anion-Exchange Resins in Aqueous Solutions (암모늄 기능기와 계면활성제가 포함된 메조포러스 음이온교환수지를 이용한 수용액중 퍼리네이트(Perrhenate) 음이온 제거)

  • Lee, Byunghwan;Chung, Yeon-Sung;Park, Chulhwan
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.436-442
    • /
    • 2008
  • Organic-inorganic hybrid mesoporous anion-exchange resins were prepared for the adsorption of anions from aqueous solutions. The prepared samples were characterized using nitrogen adsorption-desorption measurements, Fourier transform infrared (FTIR) spectroscopy, and elemental analyses. Batch and kinetic experiments were performed to examine the anion-exchange performances of the prepared samples. Among the prepared samples, the hybrid mesoporous anion-exchange resins functionalized with tributylammonium groups showed higher adsorption capacities for perrhenate ions than did the resin functionalized with trimethylammonium groups. The surfactant, hexadecylamine, which had hydrophobic alkyl chains, also showed affinity for hydrophobic perrhenate anions.

Temperature Effect of the UASB Process for Treatment of Organic Waste (상향류식 혐기성 입상슬러지 공법의 유기폐수 처리 효율에 미치는 온도의 영향)

  • Park, Chul Hwi;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.4
    • /
    • pp.45-54
    • /
    • 1996
  • Effects of temperature on the efficiency of the Upflow Anaerobic Sludge Blanket(UASB) process for treatment of wastewater from a starch and related products manufacturing industry were investigated using laboratory scale reactors equipped with two types of Gas-Solid Separator(GSS). Both fresh digested sludge and granular sludge stored nearly for one year at room temperature were good as a seeding material. The reactors seeded with aged granular sludge showed slow start-up, however, lowered activity at the initial period was recovered gradually. The GSS with an inner cylinder was proved to be effective in liquid-solid separation compared to the conventional type. Although the rate of organic removal and gas production per unit volatile suspended solids in the reactor reduced significantly as the temperature varied from 35 to $20^{\circ}C$, possibility of operation at low temperatures was shown as a result of gradual buildup of volatile suspended solids in the bed. Stable operation with a reduced efficiency was possible at a COD loading of $5-8kg/m^3/day$ at a temperature as low as $20^{\circ}C$.

  • PDF

Water Quality Improvement by Natural Wetland (습지에 의한 수질개선 효과)

  • Kim, Bom-Chul;Kim, Ho-Sub;Jun, Man-Sig;Hwang, Gil-Son
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.295-303
    • /
    • 2000
  • The water clarification efficiency was examined in a shallow wetland where dense vegetation was formed naturally in an abandoned paddy field. And, also two enclosure experiments were carried out to measure the effects of materials exchange between sediment and the overlying water with the existence of vegetation and accumulated litter. The hydraulic retention time of wetland was regulated in 1.2 day. The removal rates of SS (56%) and $NO_3-N$ (61%) were high, considering its short retention time. However, removal efficiencies of VSS (28%), COD (14%), DOC (1%),and TP (0.2%) were relatively lower. This low removal efficiencies were thought to be due to the release of dissolved form of organic matter and phosphorus from the sediment. Most of constituents except nitrate were higher in the enclosure at the beginning of enclosure installation than that of the outflowing water from wetland. And then, it has fluctuated and decreased with time. The wetland was in equilibrium state of settling, accumulation of organic debris, and regeneration of dissolved material from sediment. So ultimately high primary production by dense vegetation in the wetland may be the reason of unfavorable or low treatment efficiency of wetland after many years of operation for wastewater treatment. However, the water quality of effluent from the wetland showed smaller variation and better condition than that of inflow, especially during storm events. It can be concluded that this wetland is suitable for the improvement of water quality from nonpoint sources.

  • PDF

Microbial Reduction of Iron Oxides and Removal of TCE using the Iron Reduced by Iron Reducing Bacteria (철 환원 박테리아에 의한 산화철의 환원과 환원된 철을 이용한 TCE 제거에 관한 연구)

  • Shin, Hwa-Young;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.123-129
    • /
    • 2005
  • In situ permeable reactive barrier (PRB) technologies have been proposed to reductively remove organic contaminants from the subsurface environment. The major reactive material, zero valent iron ($Fe^0$), is oxidized to ferrous iron or ferric iron in the barriers, resulting in the decreased reactivity. Iron-reducing bacteria can reduce ferric iron to ferrous iron and iron reduced by these bacteria can be applied to dechlorinate chlorinated organic contaminants. Iron reduction by iron reducing bacteria, Shewanella algae BrY, was observed both in aqueous and solid phase and the enhancement of TCE removal by reduced iron was examined in this study. S. algae BrY preferentially reduced Fe(III) in ferric citrate medium and secondly used Fe(III) on the surface of iron oxides as an electron acceptor. Reduced iron formed reactive materials such as green rust ferrihydrite, and biochemical precipitation. These reactive materials formed by the bacteria can enhance TCE removal rate and removal capacity of the reactive barrier in the field.

A Study on Anaerobic Treatment and Energy Recovery Technology of Food Waste by Using Hybrid Anaerobic Reactor (Hybrid Anaerobic Reactor를 이용한 음식물쓰레기의 혐기성처리 및 에너지 회수에 관한 연구)

  • Yoon Young-Bong;Park Jin-Young;Ju Jin-Young;Kim Myung-Ho
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.1 s.55
    • /
    • pp.64-75
    • /
    • 2005
  • The total production of food waste was about 11,398ton/day('03) in Korea. Also, food waste was treated by landfill, incineration, reuse and anaerobic digestion. The method of food waste treatment depended primarily on landfill. However, the method of landfill causing social problems was prevented to treat food waste in the first of January 2005.12) Thus, anaerobic digestion is an important method to treat food waste because of possibility of energy recovery as methane gas. In this study, the possibility of food waste treatment containing high organic material and low pH in the one stage anaerobic reactor to save cost and time and energy recovery using $CH_{4}$ gas by the hybrid anaerobic reactor (HAR) was measured. The HAR was designed by combing the merits of the anaerobic filter (AF) to minimize the microorganism shock when food waste of very low pH was injected and up-flow anaerobic sludge blanket (UASB) to prevent from plugging and channeling phenomena by large suspended solids when semi solids were injected. Granule was packed in the section of HAR. The purpose of the BMP experiment was to measure the amount of methane generated when organic material was resolved under anaerobic conditions, to grasp bio resolution of organic material. Total accumulated methane production per VS amount was $0.471(m^{3}/\cal{kg}\;VS)$. So, the value was about $81.2\%$ of theoretical methane production which was $0.58(m^{3}/\cal{kg}\;VS)$ by elementary analysis and organic matter removal velocity (K) was $0.18(d^{-1})$. From these results, food waste was treated by anaerobic treatment. From this study, $CH_{4}$ generation from food waste (11,398 ton/day) could be estimated. By using an energy conversion factor of Braun's study, $5.97KWh/m^{3}\;CH4,\;60\%\;of\;CH_{4}$ gas generation, the amount of total energy producing food waste is to 6,727MWh/day. It could be confirmed that energy recovery using $CH_{4}$ gas was possible. Above these results, food waste containing organic matters of high concentration could be treated in HRT 30 days under an anaerobic condition, using the hybrid anaerobic reactor and reuse of $CH_{4}$ gas was possible.

Development of biological processes for the removal of assimilable organic carbon from potable water (음용수로부터 동화성 유기물질의 제거를 위한 생물학적 공정개발)

  • 이민규;감상규
    • Journal of Life Science
    • /
    • v.10 no.1
    • /
    • pp.14-21
    • /
    • 2000
  • The experiments were performed using both batch and continuous column reactors. Batch biodegradation studies were performed under aerobic conditions to determine the biodegradable fraction of the natural organic matter (NOM) source. NOM source was evaluated for its biodegradability at three different UV irradiation conditions and compared to its biodegradability without UV irradiation. In continuous experiments, system operating parameters of empty bed contact time (EBCT), recycle ratio, and influent concentration affected the extent of biofiltration in the biofilters. The effluent UV254/DOC ratios fro the biologically active columns were consistently lower than the influent values, which indicated that the dissolved organic carbon (DOC) removed by biodegradation was not a significant part of the UV-absorbable material. The increase in UV254/DOC ratio was caused by the DOC decrease across the biofilter because there was essentially no difference between the feed and effluent UV254 absorbance values over time. The results of this research showed that biofiltration was an effective method for removing the biodegradable fraction of NOM from water supplies.

  • PDF

Evaluation of Cu Removal from Mine Water in Passive Treatment Methods : Field Pilot Experiments (자연정화 기반의 현장 파일럿 실험을 통한 광산배수 구리 정화효율 평가)

  • Oh, Youn Soo;Park, Hyun Sung;Kim, Dong Kwan;Lee, Jin Soo;Ji, Won Hyun
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.235-244
    • /
    • 2020
  • Copper (Cu), one of the main contaminants in the mine drainage from the closed mine area, needs to be removed before exposed to environment because of its toxicity even in the low concentration. In this study, passive treatment based field pilot experiments using limestone and compost media were conducted during 9 months for enhancing Cu removal efficiency of the mine water treatment facility of S mine located in Goseong, Gyeongsangnam-do in South Korea. The pH increase and Cu removal efficiency showed high value at Successive Alkalinity Producing System ( SAPS) > Reducing and Alkalinity Producing System (RAPS) > limestone reactor in a sequence. The compost media using in SAPS and RAPS contributed to raise pH by organic material decomposition with generating alkalinity, thus, Cu removal efficiency increased. Also, experimental results showed that Cu removal efficiency was proportional to pH increase, meaning that pH increase is the main mechanism for Cu removal. Moreover, Sulfate Reduction Bacteria (SRB) was identified to be most activated in SAPS. It is inferred that the sulfate reduction reaction also contributed to Cu removal. This study has the site significance in that the experiments were conducted at the place where the mine water generates. In the future, the results will be useful to select the more effective reactive media used in the treatment facility, which is most appropriate to remediate mine water from the S mine.