• Title/Summary/Keyword: Organic light-emitting diodes

Search Result 749, Processing Time 0.028 seconds

Study on the ITO Pre-treatment for the Highly Efficient Solution Processed Organic Light-emitting Diodes (고효율의 용액공정용 유기 발광 다이오드 제작을 위한 ITO 전처리 연구)

  • Choi, Eun-Young;Seo, Ji-Hyun;Choi, Hak-Bum;Je, Jong-Tae;Kim, Young-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.18-23
    • /
    • 2010
  • We demonstrated that the solution processed organic light-emitting diodes (OLEDs) have the high efficiency with pre-treated indium-tin-oxide (ITO). ITO surface was pre-treated with four methods and compared each other. The pre-treatment of ITO surface improves the chemical and physical characteristics of ITO such as the surface roughness, adhesion property, and the hole injection ability. These properties were analyzed by the contact angle, atomic force microscope (AFM) image, and the current flow character in device. As a results, the device with ITO pre-treated by $O_2$ plasma shows the current efficiency of 5.93 cd/A, which is 1.5 times the device without pre-treatment.

Self-Alignment Ink-Jet Printed Light Emitting Devices and Light Emitting Seals

  • Okada, Hiroyuki;Matsui, Kenta;Naka, Shigeki;Shibata, Miki;Ohmori, Masahiko;Kurachi, Naomi;Sawamura, Momoe;Suzuki, Shin-Ichi;Inoue, Toyokazu;Miyabayashi, Takeshi;Murase, Makoto;Takao, Yuuzou;Hibino, Shingo;Bessho, Hisami
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.449-452
    • /
    • 2009
  • Ink-jet printed (IJP) self-aligned (SA) organic light emitting diodes (OLEDs) and its application to light emitting seal have investigated. Ink-jet printing of light emitting material is carried out onto transparent anode covered with insulating material. Laminated light emitting seal with SA IJP OLED without photo - lithographic process and any vacuum process, noncontact type electromagnetic power supply without electric power supply line, and light emitting tag with network type RF communication terminal by controlling display information were demonstrated.

  • PDF

Enhancement of the luminous efficiency of organic light-emitting diodes utilizing a wide-bandgap impurity doped emitting layer

  • Choo, D.C.;Bang, H.S.;Kwack, B.C.;Kim, T.W.;Seo, J.H.;Kim, Y.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1447-1450
    • /
    • 2007
  • The electrical properties of organic lightemitting devices (OLEDs) with wide-bandgap impurity-doped emitting layers (EML) were investigated. While the luminous efficiency of OLEDs with a NPB or a DPVBi-doped $Alq_3$ EML did not vary significantly with the current density, that of the OLEDs with a BCP-doped $Alq_3$ EML changed dramatically.

  • PDF

Energy Transfer and Device Performance in Polymer Based Electrophosphorescent Light Emitting Diodes and Effect of Ligand Modification in the Optical and Electrical Properties of Phosphorescent Dyes (고분자 전기인광소자에서의 에너지 전이, 소자 특성 및 인광염료의 리간드 변화에 따른 광학적, 전기적 특성 변화)

  • Lee Chang-Lyoul;Das R. R.;Noh Young-Yong;Kim Jang-Joo
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.107-121
    • /
    • 2005
  • Electrophosphorescent light emitting diodes (LEDs) using phosphorescent dyes as triplet emitter, which incorporate a heavy metal atom to mix singlet and triplet states by the strong spin-orbit coupling, can achieve the theoretically $100\%$ internal quantum efficiency. In this paper, we report on the performance and the energy transfer mechanism of polymer based highly efficient electrophosphorescent LEDs. The effect of phase separation and aggregation to the energy transfer between polymer hosts and phosphorescent guests and performance of polymer electrophosphorescent LEDs were investigated. Finally, the effect of introducing substitute group and ligand modification of phosphorescent dyes on optical and electrical properties are reported.

Efficient red organic light-emitting devices based on electrophosphorescence (전기인광을 이용한 고효율 적색 유기 전기발광소자)

  • Song, Won-Jun;Kang, Gi-Wook;Park, Su-Yeon;Seoul, Chang;Lee, Chang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.121-124
    • /
    • 2000
  • Achieving red light-emitting diodes with high quantum and luminous efficiency is required to fabricate the full-color organic electroluminescence display. In this work, we report that devices with 2.3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine palladium (II) (PdOEP), doped into tris(8-Hydroxyquinolinato)-aluminum (III) (Alq3) show a narrow deep red emission (670nm). In addition, PdOEP has been used as host material in which red dyes such as 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) doped in order to fabricate efficient red-emitting diodes.

  • PDF

Improvement of electroluminescent efficiency by using interfacial exciton blocking layer in blue emitting electrophosphorescent organic light emitting diodes

  • Kim, Ji-Whan;Kim, Joo-Hyun;Yoon, Do-Yeung;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1381-1382
    • /
    • 2005
  • We report improved efficiency in blue electrophosphorescent organic light emitting diodes by introducing an interfacial exciton blocking layer between light emitting layer (EML) and hole transport layer (HTL). Iridium(III) bis [(4,6-di-fluorophenyl)- pyridinato -N,C2']picolinate (FIrpic) was used as blue phosphorescent dopant and JHK6-3 with carbazole and electron transporting group as host and also as the interfacial layer, resulting in drastic increase in quantum efficiency.

  • PDF

Efficiency enhancement of Organic Light Emitting Diodes by the Aluminum Oxynitride Buffer Layer

  • Park, Hyung-Jun;Jang, Kyung-Soo;Jung, Sung-Wook;Hwang, Sung-Hyun;Lee, Jeoung-In;Lee, Kwang-Soo;Park, Keun-Hee;Nam, Eun-Kyoung;Jung, Dong-geun;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.675-678
    • /
    • 2007
  • In organic light emitting diodes (OLEDs), the electrons and holes need to be injected efficiently to obtain the best device performance. This means that a small injection barrier height at the ITO/organic interface is required. In this study, the surface of the ITO anode was treated with an Aluminum oxynitride (AlON).

  • PDF

Effects of Hole-Injection Buffer Layer in Organic Light-Emitting Diodes (유기 발광 소자에서 정공 주입 버퍼층의 효과)

  • 정동희;김상걸;오현석;홍진웅;이준웅;김영식;김태완
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.816-825
    • /
    • 2003
  • Current-voltage-luminance characteristics of organic light-emitting diodes (OLEDs) were measured in the temperature range of 10 K~300 K. Indium-tin-oxide (ITO) was used as an anode and aluminum as a cathode in the device. Organic of N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine (TPD) was used for a hole transporting material, and tris (8-hydroxyquinolinato) aluminum (Alq$_3$) for an electron transporting material and emissive material. And copper phthalocyanine (CuPc), poly(3,4-ethylenedi oxythiophene);poly(styrenesulfonate) (PEDOT:PSS), and poly(N-vinylcarbazole) (PVK) were used for hole-injection buffer layers. From tile analysis of electroluminescence (EL) and photoluminesccnce (PL) spectra of the Alq$_3$, the EL spectrum is more greenish then that of PL. And the temperature-dependent current-voltage characteristics were analyzed in the double and multilayer structure of OLEDS. Electrical conduction mechanism was explained in the region of high-electric and low-electric field. Temperature-dependent luminous efficiency and operating voltage were analyzed from the current-voltage- luminance characteristics of the OLEDS.

A Study on Electron Injection Characteristics of Organic Light Emitting Diodes with Doped Cathodes of Organic Light Emitting Diodes

  • Kwak, Yun-Hee;Lee, Yong-Soo;Park, Jae-Hoon;Kim, Yeon-Ju;Park, Jong-Sun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.1
    • /
    • pp.19-22
    • /
    • 2003
  • The co-evaporated cathodes composed of A1 and CsF is adopted to enhance the electrical and the optical properties of organic light emitting diodes (OLEDs). The hole transport layer (HTL), made of 50nm thick N,N-dipheny1-N,N-bis(3-methylphenyl)-1,1-bipheny14,4-diamine (TPD), and the electron transport layer (ETL), made of 50nm thick tris(8-hydroxy-quinoline) aluminum (A1q$_3$), were deposited under the base pressure of 1.6$\times$10$^{-6}$ Torr. In depositing A1-CsF, the mass ratio of CsF is varied between 1 and 10wt%. OLEDs with co-evaporated cathodes have luminance of about 35,000cd/$m^2$, and external quantum efficiency of about 1.38%. Cs tends to diffuse into the organic layer and then re-forms Cs$^{+}$cation and free electron with the Cs-doped surface region.n.

Performance of Organic light-emitting diode by various surface treatments of indium tin oxide (Indium tin oxide 기판의 표면처리에 따른 유기 발광다이오드의 특성)

  • Kim, Sun-Hyuk;Han, Jeong-Whan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.9
    • /
    • pp.1-10
    • /
    • 2002
  • We have done various treatments of indium tin oxide (ITO) surface for organic light-emitting diodes (OLEDs), and investigated the surface states by different surface treatments using atomic force microscopy (AFM) and Auger electron spectroscopy (AES). We have fabricated OLEDs deposited by ultra-high vacuum molecular beam deposition system and studied the characteristics of the OLEDs. We have observed the dramatical improvement of the performance of OLEDs fabricated on ITO substrates treated by $O_2$ plasma treatment reduces the carbon comtamination of ITO surfaces and increases the work function of ITO.