Browse > Article

Energy Transfer and Device Performance in Polymer Based Electrophosphorescent Light Emitting Diodes and Effect of Ligand Modification in the Optical and Electrical Properties of Phosphorescent Dyes  

Lee Chang-Lyoul (School of Materials Science and Engineering, Center for Organic Light Emitting Diodes, Seoul National University)
Das R. R. (Samsung Advanced Institute of Technology)
Noh Young-Yong (Department of Materials Science and Engineering, Gwangju Institute of Science and Technology)
Kim Jang-Joo (School of Materials Science and Engineering, Center for Organic Light Emitting Diodes, Seoul National University)
Publication Information
Polymer(Korea) / v.29, no.2, 2005 , pp. 107-121 More about this Journal
Abstract
Electrophosphorescent light emitting diodes (LEDs) using phosphorescent dyes as triplet emitter, which incorporate a heavy metal atom to mix singlet and triplet states by the strong spin-orbit coupling, can achieve the theoretically $100\%$ internal quantum efficiency. In this paper, we report on the performance and the energy transfer mechanism of polymer based highly efficient electrophosphorescent LEDs. The effect of phase separation and aggregation to the energy transfer between polymer hosts and phosphorescent guests and performance of polymer electrophosphorescent LEDs were investigated. Finally, the effect of introducing substitute group and ligand modification of phosphorescent dyes on optical and electrical properties are reported.
Keywords
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 M. A. Blado, D. F. O'Brien, M. E. Thompson, and S. R. Forrest, Phys. Rev. B, 60, 14422 (1999)
2 R. H. Friend, R. W. Gymer, and A. B. Holmes, Nature, 397, 121 (1999)
3 J.-S.Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, J. Appl. Phys., 88, 1073 (2000)   DOI   ScienceOn
4 M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett., 75, 4 (1999)
5 C.-L. Lee, K. B. Lee, and J. -J. Kim, Mater. Sci. Eng. B, 85, 228 (2001)
6 C.-L. Lee, N.-G. Kang, Y.-S. Cho, J.-S. Lee, and J.-J. Kim, Optical Materials, 21, 119 (2002)
7 S. O. Jung, Y. J. Kang, H.-S. Kim, Y-H. Kim, C.-L. Lee, J.-J. Kim, S.-K. Lee, and S.-K. Kwon, Eur. J. Inorg. Chem., 17, 3415 (2004)
8 C.-L. Lee, R. R. Das, and J.-J. Kim, Chem. Mater., 16, 4642 (2004)
9 C.-L. Lee, R. R. Das, and J.-J. Kim, Curr. Appl. Phys., 5, 309 (2005)
10 H. Kunkely and A. Vogler, Chem. Phys. Lett., 319, 486 (2000)
11 C. A. Tolman, Chem. Rev., 77, 313 (1977)
12 D. F. O'Brien, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett., 74, 442 (1999)
13 T. Igarashi, K. Kondo, T. Koyama, and T. Yamaguchi, Appl. Phys. Lett., 86, 103507 (2005)
14 Y. Cao, I. D. Parker, G. Yu, C. Zhang, and A. J. Heerger, Nature, 397, 414 (1999)
15 J. S. Wilson, A. S. Dhoot, A. J. A. B. Seeley, M. S. Khan, AKohler, and R. H. Friend, Nature, 413, 828 (2001)   DOI   PUBMED   ScienceOn
16 M. A. Baldo, D. F. Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature, 395, 151 (1998)
17 A. P. Monkman, H. D. Burrows, L. J. Hartwell, L. E. Horsburgh, I. Hamblett, and S. Navaratnam, Phys. Rev. Lett., 86, 1358 (2001)   DOI   ScienceOn
18 Y. Kawamura, S. Yanagida, and S. R. Forrest, J. Appl. Phys., 92, 87 (2002)
19 F.-C. Chen, Y. Yang, M. E. Thompson, and J. Kido, Appl. Phys. Lett., 80, 2308 (2002)   DOI   ScienceOn
20 H. W. Lee, R. R. Das, C.-L. Lee, Y.-Y. Noh, and J.-J. Kim, Mat. Res. Soc. Symp. Proc., 708 (2002)
21 C.-L. Lee, K. B. Lee, and J. -J. Kim, Appl. Phys. Lett., 77, 2280 (2000)
22 R. J. Holmes, S. R. Forrest, Y.-J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, Appl. Phys. Lett., 82, 2422 (2003)
23 M. Wohlgenannt, K.Tandon, S. Mazumdar, S. Ramasesha, and Z. V. Vardeny, Nature, 409, 494 (2001)   DOI   PUBMED   ScienceOn
24 X. Chen, J. L. Liao, Y. Liang, M. O. Ahmed, H. E. Tseng, and S. A. Chen, J. Am. Chem. Soc., 125, 637 (2003)
25 S. Tokito, M. Suzuki, M. Kamachi, K. Shirane, and F. Sato, Org. Electron., 4, 105 (2003)
26 M. J. Yang and T.Tsutsui, Jpn. J. Appl. Phys., L828, 39 (2000)
27 R. J. Watts, G. A. Crosby, and J. L. Sansregret, Inorg. Chem., 11, 1474 (1972)
28 C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett., 79, 2082 (2001)   DOI   ScienceOn
29 M. Nishizawa, T. M. Suzuki, S. Sprouse, R. J. Watts, and P. C. Ford, Inorg. Chem., 23, 1837 (1984)
30 C. Adachi, R. C. Kwong, and S. R. Forrest, Org. Electron., 2, 37 (2001)   DOI   ScienceOn
31 H. H. Jaffe and M. Orchin, Theory and Applications of Ultraviolet Spectroscopy, Wiley, New York, 1962
32 S. Tokito, T. Iijima, T. Tsuzuki, and F. Sato, Appl. Phys. Lett., 83, 2459 (2002)
33 M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and Z. G. Soos, Phys. Rev. B, 68, 075211 (2003)
34 C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys., 90, 5048 (2001)   DOI   ScienceOn
35 Y.-Y. Noh, C.-L. Lee, K. Yase, and J.-J. Kim, J. Chem. Phys., 118, 2853 (2003)
36 C.-L. Lee, R.-R. Das, Y.-Y. Noh, and J.-J. Kim, Journal of Information Display, 3, 6 (2002)
37 D. Woska, A. Prock, and W. P. Giering, Organometallics, 19, 4629 (2002)
38 R.-R. Das, C.-L. Lee, Y.-Y. Noh, and J.-J. Kim, Optical Materials, 21, 143 (2002)