• Title/Summary/Keyword: Organic light-emitting diode

Search Result 437, Processing Time 0.024 seconds

Development of Blue Organic Light-emitting Diodes(OLEDs) Due to Change in Mixed Ratio of HTL:EML(DPVBi:NPB) Layers (HTL:EML(DPVBi:NPB)층의 조성비 변화에 따른 청색 유기 발광 소자 개발)

  • Lee, Tae-Sung;Lee, Byoung-Wook;Hong, Chin-Soo;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.853-858
    • /
    • 2008
  • The structure of organic light-emitting diodes(OLEDs) with typical heterostructure consists of anode, hole injection layer, hole transport layer, light-emitting layer, electron transport layer, electron injection layer, and cathode. 4,4bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl(NPB) used as a hole transport layer and 4'4-bis(2,2'-diphenyl vinyl)-1,1'-biphenyl(DPVBi) used as a blue light emitting layer were graded-mixed at selected ratio. Interface at heterojunction between the hole transport layer and the elecrtron transport layer restricts carrier's transfer. Mixing of the hole transport layer and the emitting layer reduces abrupt interface between the hole transport layer and the electron transport layer. The operating voltage of OLED devices with graded mixed-layer structure is 2.8 V at 1 $cd/m^2$ which is significantly lower than that of OLED device with typical heterostructure. The luminance of OLED devices with graded mixed-layer structure is 21,000 $cd/m^2$ , which is much higher than that of OLED device with typical heterostructure. This indicates that the graded mixed-layer enhances the movement of carriers by reducing the discontinuity of highest occupied molecular orbital(HOMO) of the interface between hole transport layer and emitting layer.

White Light Emitting Diode with the Parallel Integration of InGaN-based Multi-quantum Well Structures (InGaN계 다중양자우물구조를 병렬 집적화한 백색광소자의 특성 연구)

  • 김근주;이기형
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.4
    • /
    • pp.39-43
    • /
    • 2004
  • The parallel multi-quantum well structures of blue and amber lights were designed and grown in metal-organic chemical vapor deposition by utilizing integration process on epitaxial layers. Samples were deposited for 5 periods-InGaN multi-quantum well layers for blue light emission and partially etched in order to regrow the 3 periods-InGaN multi-quantum wells for amber light. The blue and amber photoluminescence spectra were observed at the peak wavelengths of 475 and 580 nm, respectively. The chromatic coordinates of the white emitting diode were 0.31 and 0.34.

  • PDF

Research Trends in Organic Light Emitting Diode (유기 전기 발광소자의 원리와 연구동향)

  • Shin, Hwangyu;Kim, Seungho;Lee, Jaehyun;Lee, Hayoon;Jung, Hyocheol;Park, Jongwook
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.381-388
    • /
    • 2015
  • Organic Light Emitting Diodes (OLEDs) have been receiving great attention in academic and industrial fields, and it is being actively applied to mobile display, as well as large area TV and next-generation flexible display due to their excellent advantages. In addition, the scope of research on OLED materials and device fabrication technology is getting expanded. This review discusses the principle and basic composition of OLED and also classifies OLED materials with different chemical structures according to their usages. Systematic classification of OLEDs by technical concept and material characteristics can help developing new emitting materials.

Solution Processable Ionic p-i-n OLEDs (습식 이온 도핑 p-i-n 구조 유기 발광 소자)

  • Han, Mi-Young;Oh, Seung-Seok;Park, Byoung-Choo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.974-979
    • /
    • 2009
  • We studied solution-processed single-layered phosphorescent organic light-emitting diodes (PHOLEDs), doped with ionic salt and treated with simultaneous electrical and thermal annealing. Because the simultaneous annealing causes the accumulation of salt ions at the electrode surfaces, the energy levels of the organic molecules are bent by the electric fields due to the adsorbed ions, i.e., the simultaneous annealing can induce the proper formation of an ionic p-i-n structure. As a result, an ionic p-i-n PHOLED with a peak luminescence of over ${\sim}35,000\;cd/m^2$ and efficiency of 27 cd/A was achieved through increased and balanced carrier-injections.

Effect of plasma polythiophene as a buffer layer inserted on OLEDs (버퍼층으로서 플라즈마 polythiopheneol 유기EL소자에 미치는 영향)

  • Park, S.M.;Lee, B.J.;Kim, H.G.;Lim, K.B.;Kim, J.T.;Park, S.H.;Lim, E.C.;Lee, E.H.;Lee, D.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.177-180
    • /
    • 2002
  • The purpose of this thesis is to develope buffer materials by the plasma polymerization method. In this article the buffer materials, plasma poly thiophene(PPTh) is used to study the interface of eter/organic in organic light emitting diodes(OLED). The interface of meter/organic materials is the important and critical objectives in development of OLED. The hole transport layer was N,N'-dipheneyl-N, N'bis-(3-methypheneyl)-1,1'dipheneyl-4,4'-diamine (TPD); the host material of mission layer was 8-tris-hydroxyquinoline aluminium (Alq3). When PPTh was inserted between ITO and TPD, emission efficiency increased.

  • PDF

EL Properties of the Organic Light-Emitting-Diode with various Thickness and Cathode Electrode (유기발광소자의 막두께 및 음극전극의 변호에 따른 발광특성)

  • 김형권;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.897-902
    • /
    • 1998
  • We prepared Organic LED with a two layer structure by vacuum evaporation. The diode consisted of hole transfer layer (thickness of 30, 50, 70 nm) and electron transfer layer (thickness of 70, 50, 30 nm) material, which was N, N'-diphenyl- N, N'-bis-(3-methyl phenyl)-1,1'-diphenyl-4,4'-diamine)(TPD) and tris(8-hydroxy quinoline) aluminum(Alq3), respectively. We investigated EL properties of the LED with various thickness and cathode electrode. The best results were obtained when thickness of the electron layer is equal to that of emission layer and when AlLi alloy was used as a cathode. The EL intensity, luminance and efficiency of organic LED with equal of layer thick were improved seven, three and two times, respectively. Alq3 was ionized by carrier injection from cathode and could produce exitons. After electron-hole pairs were formed by combination of the electrons and holes at the emission layer, Alq3 layer emitted light.

  • PDF

Simulation study on the optical structures for improving the outcoupling efficiency of organic light-emitting diodes

  • Jeong, Su Seong;Ko, Jae-Hyeon
    • Journal of Information Display
    • /
    • v.13 no.4
    • /
    • pp.139-143
    • /
    • 2012
  • In this study, optical simulation was used to compare three optical structures that could be applied to the typical organic light-emitting diode to increase the outcoupling efficiency. These were spherical scattering particles (treated as Mie scatterers) embedded in the glass substrate, microlenses formed on the glass substrate, and a diffusing layer (DL) with a Gaussian scattering distribution function inserted between the indium tin oxide (ITO) and the glass substrate. It was found that the application of microlens array and that of scattering particles in the glass substrate exhibited similar enhancements in the outcoupling efficiency when the density and the refractive index of the scattering particles were optimized. The DL located at the interface between the glass and the ITO further enhanced the efficiency because it could further extract the trapped light in the waveguide mode. The appropriate combination of these three structures increased the outcoupling efficiency to about 42%, which is much greater than the typical values of 15-20% when there is no optical structure for light extraction.

Roll-to-roll microcontact-printed microlens array for light extraction film of organic light-emitting diodes (유기발광다이오드의 외부 광추출층을 위한 롤투롤 마이크로컨택 방식으로 인쇄된 마이크로렌즈 어레이)

  • Hwa, Subin;Sung, Baeksang;Lee, Jae-Hyun;Lee, Jonghee;Kim, Min-Hoi
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.205-210
    • /
    • 2022
  • We demonstrated roll-to-roll microcontact printed (mCP) microlens array (MLA) to enhance the light extraction of organic light emitting diodes (OLEDs). The commercially provided microlens array is used as a template for polydimethylsiloxane (PDMS) roll stamp. The fluorinated film is formed on the PDMS roll stamp from fluorinated ink with low boiling point and printed onto the bottom side of the organic light emitting diode without high pressure and high thermal treatment. With optimized concentration of ink, the pattern which is almost identical to that of the template MLA was successfully printed. Due to the structure and low optical absorbance of microcontact printed MLA, the external quantum efficiency of OLED was improved by about 18%.

Properties of high efficiency 2-${\lambda}$ white organic light emitting diode (고 효율 2파장 백색 유기 발광 소자의 발광 특성)

  • Lee, Oun-Gyu;Oh, Young-Jun;Ko, Young-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.324-325
    • /
    • 2006
  • In order to develop high efficiency white organic light-emitting diodes (OLEDs), OLED devices consisted of red and blue emitting layers (EMLs) were fabricated and the effect of respective layer thickness and the order of layer stacking on the luminous efficiency was evaluated Red/blue structure showed higher efficiency than blue/red, due to the higher exiton formation. In the blue layer of red/blue structure. However, the efficiency of the red/blue significantly depended on the thickness of the red layer, whereas the thickness of the blue layer was not affect so much. The optimum thickness of the red layer was 20 ${\AA}$, where the luminous and power efficiencies were 155 cd/A and 10.51 lm/W at 1000~3000$cd/m^2$ respectively and the maximum luminance was about 80,000 $cd/m^2$.

  • PDF

Life Estimation of Organic Light Emission Diode by Accelerated Test (유기발광(有機發光) 다이오드의 가속(加速) 수명(壽命) 시험(試驗)에 관한 연구(硏究))

  • Choi, Young-Tei;Cho, Jai-Rip
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2010.04a
    • /
    • pp.262-268
    • /
    • 2010
  • Organic light emitting diode is developed fast from 1963 after discovering electric light emitting phenomenon. First PMOLED(passive matrix OLED) product is manufactured and AMOLED(active matrix OLED) using TFT(thin film ransistor) is now in the center. PMOLED is mainly mounted at sub display. but AMOLED is mounted at main display. Also AMOLED expand the market to PMP(portable multimedia players), navigation and TV. Even thought OLED's market is opening to many applications, OLED is worried about lifetime until now. That's appeared in market in a very short time and is not known well about result of OLED's lifetime and reliability test. And there is no standard ssessment method and not enough study to standardization the method. A study's purpose is reduce the time for life test by accelerated current and it can do production possible design by accelerated life model in design phase. It's must be add to process variables and design variables(like ratio of light emitting, organic material structure, condition of aging, etc) to make the best use of supplied accelerated lifetime model in this paper. In terms of lifetime it needs each criterion of applications because of image sticking. In conclusion, it's possible to discover new defect because there is not much time to be opened in market and develop a method of manufacturing process & materials, so we need to study on the subject of this paper continuously.

  • PDF