DOI QR코드

DOI QR Code

Simulation study on the optical structures for improving the outcoupling efficiency of organic light-emitting diodes

  • Received : 2012.07.05
  • Accepted : 2012.09.20
  • Published : 2012.12.31

Abstract

In this study, optical simulation was used to compare three optical structures that could be applied to the typical organic light-emitting diode to increase the outcoupling efficiency. These were spherical scattering particles (treated as Mie scatterers) embedded in the glass substrate, microlenses formed on the glass substrate, and a diffusing layer (DL) with a Gaussian scattering distribution function inserted between the indium tin oxide (ITO) and the glass substrate. It was found that the application of microlens array and that of scattering particles in the glass substrate exhibited similar enhancements in the outcoupling efficiency when the density and the refractive index of the scattering particles were optimized. The DL located at the interface between the glass and the ITO further enhanced the efficiency because it could further extract the trapped light in the waveguide mode. The appropriate combination of these three structures increased the outcoupling efficiency to about 42%, which is much greater than the typical values of 15-20% when there is no optical structure for light extraction.

Keywords

References

  1. G. Gu, D.Z. Garbuzov, P.E. Burrows, S. Venkatesh and S.R. Forrest, Opt. Lett. 22, 396 (1997). https://doi.org/10.1364/OL.22.000396
  2. A. Chutinan, K. Ishihara, T. Asano, M. Fujita and S. Noda, Org. Electron. 6, 3 (2005). https://doi.org/10.1016/j.orgel.2004.12.001
  3. S. Okutani, N. Kamiura, H. Sano, T. Sawatani, D. Fujita, T. Takehara, K. Sunohara and M. Kobayashi, SID'07 Tech. Digest 173 (2007).
  4. Y. Sun and S.R. Forrest, Nat. Photonics 2, 483 (2008). https://doi.org/10.1038/nphoton.2008.132
  5. T.-W. Koh, J.-M. Choi, S. Lee and S. Yoo, Adv. Mater. 22, 1849 (2010). https://doi.org/10.1002/adma.200903375
  6. W.H. Koo, S.M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka and H. Takezoe, Nat. Photonics 4, 222 (2010). https://doi.org/10.1038/nphoton.2010.7
  7. Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim and Y.R. Do, Appl. Phys. Lett. 82, 3779 (2003). https://doi.org/10.1063/1.1577823
  8. T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano and M. Yokoyama, Adv. Mater. 13, 1149 (2001). https://doi.org/10.1002/1521-4095(200108)13:15<1149::AID-ADMA1149>3.0.CO;2-2
  9. H.J. Peng, Y.L. Ho, X.J. Yu and H.S. Kwok, J. Appl. Phys. 96, 1649 (2004). https://doi.org/10.1063/1.1765859
  10. K. Hong, H.K. Yu, I. Lee, K. Kim, S. Kim and J.-L. Lee, Adv. Mater. 22, 4890 (2010). https://doi.org/10.1002/adma.201002028
  11. C.F. Madigan, M.-H. Lu and J.C. Sturm, Appl. Phys. Lett. 76, 1650 (2000). https://doi.org/10.1063/1.126124
  12. S. Moller and S.R. Forrest, J. Appl. Phys. 91, 3324 (2002). https://doi.org/10.1063/1.1435422
  13. M.-L. Chen, A.-C. Wei and H.-P. Shieh, Jpn. J. Appl. Phys. 46, 1521 (2007). https://doi.org/10.1143/JJAP.46.1521
  14. C.-J. Yang, S.-H. Liu, H.-H. Hsieh, C.-C. Liu, T.-Y. Cho and C.-C. Wu, Appl. Phys. Lett. 91, 253508 (2007). https://doi.org/10.1063/1.2827182
  15. Y.-H. Cheng, J.-L. Wu, C.-H. Cheng, K.-C. Syao and M.-C.M. Lee, Appl. Phys. Lett. 90, 091102 (2007). https://doi.org/10.1063/1.2709920
  16. C.-C. Liu, S.-H. Liu, K.-C. Tien, M.-H. Hsu, H.-W. Chang, C.-K. Chang, C.-J. Yang and C.-C.Wu, Appl. Phys. Lett. 94, 103302 (2009). https://doi.org/10.1063/1.3097354
  17. N. Nakamura, N. Fukumoto, F. Sinapi, N.Wada,Y. Aoki and K. Maeda, SID'09 Tech. Digest 603 (2009).
  18. J.-H. Jang, K.-J. Kim, J.-H. Kim and M.-C. Oh, Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 18, 441 (2007). https://doi.org/10.3807/HKH.2007.18.6.441
  19. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo, Nature 459, 234 (2009). https://doi.org/10.1038/nature08003
  20. A. Dodabalapur, L.J. Rotberg, R.H. Jordan, T.M. Miller, R.E. Slusher and J.M. Phillips, J. Appl. Phys. 80, 6954 (1996). https://doi.org/10.1063/1.363768
  21. V. Bulovic, V.B. Khalfin, G. Gu, P.E. Burrows, D.Z. Garbuzov and S.R. Forrest, Phys. Rev. B 58, 3730 (1998). https://doi.org/10.1103/PhysRevB.58.3730
  22. C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 2004).

Cited by

  1. Far-field luminous intensity distribution depending on the outcoupling structure of organic light-emitting diodes vol.14, pp.2, 2013, https://doi.org/10.1080/15980316.2013.801927
  2. Optical Simulation Study on the Effect of Diffusing Substrate and Pillow Lenses on the Outcoupling Efficiency of Organic Light Emitting Diodes vol.17, pp.3, 2013, https://doi.org/10.3807/josk.2013.17.3.269
  3. 쌍극자 광원의 진동방향, Mie 산란자, 그리고 Pillow 렌즈가 OLED의 광추출효율에 미치는 영향에 대한 시뮬레이션 연구 vol.25, pp.4, 2012, https://doi.org/10.3807/kjop.2014.25.4.193
  4. Simulation Study on the Effect of the Emitter Orientation and Photonic Crystals on the Outcoupling Efficiency of Organic Light-Emitting Diodes vol.18, pp.6, 2014, https://doi.org/10.3807/josk.2014.18.6.732
  5. 유전체 다층 거울이 유기발광다이오드의 광효율 향상에 미치는 영향에 관한 광학 시뮬레이션 연구 vol.26, pp.3, 2015, https://doi.org/10.3807/kjop.2015.26.3.139