• Title/Summary/Keyword: Organic films

Search Result 1,332, Processing Time 0.024 seconds

Fabrication of Organic Thin Films by Pulsed Laser Deposition (펄스 레이저 증착법을 이용한 유기 박막의 제작)

  • Park, Sang-Moo;Lee, Boong-Joo
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.455-460
    • /
    • 2008
  • In recent years, there has been highly interestedin pulsed laser deposition (PLD) method for fabrication of the organic thin films, as an alternative to conventional fabrication method such as vacuum evaporation and spin coating techniques. In this study, organic thin films of $Alq_3$ (aluminato-tris-8-hydroxyquinolate) and TPD for organic light emitting diodes (OLED) were deposited by PLD using KrF excimer ($\lambda$=278 nm) laser in nitrogen atmosphere. Deposited films were evaluated by photoluminescence(PL), Fourier-transform Infrared Spectroscopy (FT-IR) to study the effect of the laser and $N_2$ atmosphere parameters on the structural and optical properties.

The Fabrication of $\beta$-PVDF Organic Thin Films by Vapor Deposition Method and Their Piezoelectricity (진공증착법을 이용하여 제조한 $\beta$-PVDF 유기박막의 압전특성)

  • Park, S.H.;Lee, S.W.;Lim, E.C.;Kim, Y.H.;Kim, J.S.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1549-1551
    • /
    • 1997
  • In this study, the $\beta$-Polyvinylidene fluoride($\beta$-PVDF) organic thin films were fabricated by physical vapor deposition method as one of the dry-processing methods and applying electric field during the vapor deposition. When the substrate temperature is $80^{\circ}C$, the PVDF organic thin films exhibit the characteristic absorption band of the $\beta$ forms $510cm^{-1}$, $602cm^{-1}$ and $1273cm^{-1}$, and the fraction of $\beta$ form crystals in the total crystalline content was 95%. The molecular structure of PVDF organic thin films were transformed from $\alpha$ to $\beta$ form with increasing of applied electric field and the control of substrate temperature.

  • PDF

Patterned Surfaces in Self-Organized Block Copolymer Films with Hexagonally Ordered Microporous Structures

  • Hayakawa Teruaki;Kouketsu Takayuki;Kakimoto Masa-alki;Yokoyama Hideaki;Horiuchi Shin
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.52-58
    • /
    • 2006
  • A novel fabrication of the patterned surfaces in the polymer films was demonstrated by using the self-organizing character of the block copolymers of polystyrene-b-oligothiophenes and polystyrene-b-aromatic amide dendron. Hexagonally arranged open pores with a micrometer-size were spontaneously formed by casting the polymer solutions under a moist air flow. The amphiphilic character of the block copolymers played the crucial role as a surfactant to stabilize the inverse emulsion of water in the organic solvent, and subsequently the aggregated structure of the hydrophilic oligothiophene or aromatic amide dendron segments remained on the interiors of the micropores. The chemical composition on the top of the surface of the microporous films was characterized by energy-filtering transmission electron microscopy (EFTEM) or a time-of-flight secondary ion mass spectrometer (ToF-SIMS). The characterizations clearly indicated that the patterned surfaces in the self-organized block copolymer films with the hexagonally ordered microporous structures were fabricated in a single step.

Preparation of Hard Coating Films with High Refractive Index using Organic-Inorganic Hybrid Coating Solutions (유-무기 하이브리드 코팅 용액을 이용한 고굴절 하드코팅 막의 제조)

  • Choi, Jin Joo;Kim, Nam Uoo;Ahn, Chi Yong;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.388-394
    • /
    • 2014
  • Inorganic-organic hybrid coating solutions were synthesized using titania sol from titanium isopropoxide (TTIP) as an inorganic component and mixture of two or three types of silane coupling agents, such as methacryloxypropyl trimethoxysilane (MPTMS), aminopropyl triethoxysilane (APS), glycidoxypropyl trimethoxysilane (GPTMS) and vinyltriethoxysilane (VTES) as an organic component. The hard coating films were obtained by spin-coating on the polycarbonate sheets and curing the inorganic-organic hybrid coating solutions. The coating films made from the mixture of two types of silane coupling agents showed poor pencil hardness and adhesion, while those from the mixture of three types of silane coupling agents exhibited an improved pencil hardness of 2H~4H and adhesion of 5B. The refractive indexes of coating films were increased from 1.56 to 1.63 at 550 nm by increasing the content of titania sols from 20 to 30 g.

Organic Semiconducting Thin Films Fabricated by Using a Pre-metered Coating Method for Organic Thin Film Transistors (정량 주입(Pre-metered) 코팅 방식을 이용한 유기 트랜지스터 반도체 박막 제작 연구)

  • Cho, Chan-Youn;Jeon, Hong-Goo;Choi, Jin-Sung;Kim, Yun-Ki;Lim, Jong-Sun;Jung, J.;Cho, Song-Yun;Lee, Chang-Jin;Park, Byoung-Choo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.531-536
    • /
    • 2012
  • We herein present results of flat and uniform polymer-blended small molecular semiconductor thin films. Which were produced for organic thin film transistors (OTFTs), using a simple pre-metered horizontal dipping process. The organic semiconducting thin films were composed of 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-PEN) composite blended with a polymer binder of poly(${\alpha}$-methylstyrene) (PaMS). We show that the pre-metered horizontal-dip-coating(H-dip-coating) process allowed the critical control of the thickness of the blended TIPS-PEN:PaMs thin film. The fabricated OTFTs using the TIPS-PEN:PaMs films exhibited maximum field-effect mobility of $0.22\;cm^2\;V^{-1}\;s^{-1}$. These results demonstrated that H-dip-coated TIPS-PEN:PaMS films show considerable promise for the production of reliable, reproducible, and high-performance OTFTs.

Correlation between the dielectric constant and porosity due to the nano pore in the thin film (나노기공에 의한 박막 내의 기공율과 절연상수의 상관관계)

  • Oh, Teresa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.3 s.357
    • /
    • pp.1-5
    • /
    • 2007
  • SiOC films were made using the oxygen and bistrimethylsilylmethane mixed precursor. The chemical properties of SiOC films divided into three properties, organic, hybrid and inorganic depending on the flow rate ratio between oxygen and bistrimethylsilylmethane precursor. The films with organic properties decreased dielectric constant, because of pore incorporation in final materials. In this study, the porosity of SiOC films with organic properties was investigated using the Makwell-Garnett equation. The porosity of the films could be correlated with the blue shift in the infrared spectra scopy, and increased with the decreasing the dielectric constant of the film.

Transparent Anodic Properties of In-doped ZnO thin Films for Organic Light Emitting Devices (In 도핑된 ZnO 박막의 투명 전극과 유기 발광 다이오드 특성)

  • Park, Young-Ran;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.303-307
    • /
    • 2007
  • Transparent In-doped zinc oxide (IZO) thin films are deposited with variation of pulsed DC power at Ar atmosphere on coming 7059 glass substrate by pulsed DC magnetron sputtering. A c-axis oriented IZO thin films were grown in perpendicular to the substrate. The optical transmittance spectra showed high transmittance of over 80% in the UV-visible region and exhibited the absorption edge of about 350 nm. Also, the IZO films exhibited the resistivity of ${\sim}10^{-3}{\Omega}\;cm$ and the mobility of ${\sim}6cm/V\;s$. Organic Light-emitting diodes (OLEDs) with IZO/N,N'-diphenyl-N, N'-bis(3-methylphenl)-1, 1'-biphenyl-4,4'-diamine (TPD)/tris (8-hydroxyquinoline) aluminum ($Alq_3$)/LiF/Al configuration were fabricated. LiF layer inserted is used as an interfacial layer to increase the electron injection. Under a current density of $100\;mA/cm^2$, the OLEDs show an excellent efficiency (9.4 V turn-on voltage) and a good brightness ($12000\;cd/m^2$) of the emission light from the devices. These results indicate that IZO films hold promise for anode electrodes in the OLEDs application.

Preparation of Ferroelectric $YMnO_3$ Thin Films by Metal-Organic Decomposition Process and their Characterization (Metal-Organic Decomposition법에 의한 강유전성 $YMnO_3$ 박막의 제조 및 특성)

  • 김제헌;강승구;김응수;김유택;심광보
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.665-672
    • /
    • 2000
  • The ferroelectric YMnO3 thin films were prepared by MOD(metal-organic decomposition) method with Y- and Mn-acetylacetonate as starting materials. Thin films were grown on various substrates by spin-coating technique. The crystalline phases of the thin films were identified by X-ray diffractometer as a function of heat-treatment temperature, pH of coating solution and substrate. In addition, the effect of Mn/Y molar ratio(0.8~1.2) on the formation of hexagonal-YMnO3 phase was investigated. In forming highly c-axisoriented hexagonal-YMnO3 single phase, the Pt coated Si substrate was more effective than the bare Si substrate, and the optimum heat-treatment condition was at 82$0^{\circ}C$ for 30 min. Higher Mn/Y molar ratio within 0.8~1.2 and pH of YMnO3 precursor solution within 0.5~2.5 favored formation of ferroelectric hexagonal phase rather than orthorhombic phase. Leakage current density of the hexagonal-YMnO3 thin film formed on Pt(111)/TiO2/SiO2/Si substrate was low enough as 0.4~4.0$\times$10-8(A/$\textrm{cm}^2$) at 5 V and its remanent polarization(Pr), calculated from the P-E hysteresis loop, was 3 nC/$\textrm{cm}^2$.

  • PDF

Polymerized Organic Thin Films and Comparison on their Physical and Electrochemical Properties

  • Cho, S.H.;You, Y.J.;Kim, J.G.;Boo, J.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.9-13
    • /
    • 2003
  • Plasma polymerized organic thin films were deposited on Si(100), glass and metal substrates at $25∼100 ^{\circ}C$ using thiophene and toluene precursors by PECVD method. In order to compare physical and electrochemical properties of the as-grown thin films, the effects of the RF plasma power in the range of 30∼100 W and deposition temperature on both corrosion protection efficiency and physical properties were studied. We found that the corrosion protection efficiency ($P_{k}$), which is one of the important factors for corrosion protection in the interlayer dielectrics of microelectronic devices application, was increased with increasing RF power. The highest $P_{k}$ value of plasma polymerized toluene film (85.27% at 70 W) was higher than that of the plasma polymerized thiophene film (65.17% at 100 W), indicating inhibition of oxygen reduction. The densely packed and tightly interconnected toluene film could act as an efficient barrier layer to the diffusion of molecular oxygen. The result of contact angle measurement showed that the plasma polymerized toluene films have more hydrophobic surface than those of the plasma polymerized thiophene films.

Preparation and Electronic Defect Characteristics of Pentacene Organic field Effect Transistors

  • Yang, Yong-Suk;Taehyoung Zyung
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.75-79
    • /
    • 2002
  • Organic materials have considerable attention as active semiconductors for device applications such as thin-film transistors (TFTs) and diodes. Pentacene is a p-type organic semiconducting material investigated for TFTs. In this paper, we reported the morphological and electrical characteristics of pentacene TFT films. The pentacene transistors showed the mobility of 0.8 $\textrm{cm}^2$/Vs and the grains larger than 1 ${\mu}{\textrm}{m}$. Deep-level transient spectroscopy (DLTS) measurements were carried out on metal/insulator/organic semiconductor structure devices that had a depletion region at the insulator/organic-semiconductor interface. The duration of the capacitance transient in DLTS signals was several ten of seconds in the pentacene, which was longer than that of inorganic semiconductors such as Si. Based on the DLTS characteristics, the energy levels of hole and electron traps for the pentacene films were approximately 0.24, 1.08, and 0.31 eV above Ev, and 0.69 eV below Ec.