• Title/Summary/Keyword: Organic films

Search Result 1,334, Processing Time 0.025 seconds

Electrical Properties by Organic Thin Films According to Manufacture Condition (제작조건에 따른 유기박막의 전기특성)

  • Song, Jin-Won;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.467-469
    • /
    • 2000
  • We give pressure stimulation into organic thin films and then manufacture a device under the accumulation condition that the state surface pressure is 20[mN/m]. LB layers of Arac. acid deposited by LB method were deposited onto Y-type silicon wafer as x, y, z-type film. In processing of a device manufacture, we can see the process is good from the change of a surface pressure for organic thin films and transfer ratio of area per molecule. The structure of manufactured device is Au/arachidic acid/Al, the number of accumulated layers Also, we then examined of the MIM device by means of I-V. The I-V characteristic of the device is measured from 0 to +2[V].

  • PDF

Microstructure and Microwave Dielectric Properties of ZrTiO4 Thin Films Prepared by Metal-organic Decomposition (금속유기분해 법으로 제조한 ZrTiO4 박막의 미세구조 및 고주파 유전특성)

  • Park, Chang-Sun;Sun, Ho-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.1
    • /
    • pp.53-60
    • /
    • 2009
  • $ZrTiO_4$ dielectric thin films were coated by metal-organic decomposition, and annealed by rapid thermal processing up to $900^{\circ}C$ for their crytallization. Crystallized single-phase $ZrTiO_4$ thin films were fabricated above the annealing temperature of $800^{\circ}C$, but their grains were randomly oriented without specific textured orientation. Best dielectric properties were presented by the sample annealed at $800^{\circ}C$ which had crystalline structure and flat surface. Dielectric constant of the film was maintained at 32 throughout full frequency range up to 6 GHz, and dielectric loss was varied between 0.01 and 0.04.

A Study on the Optical Properties of the Organic Thin Films by Plasma Polymerization (플라즈마 중합법에 의한 유기 박막의 광학 특성에 관한 연구(I))

  • Choi, C. S.;Jung, U.;Lee, D. C.;Park, G. B.;Park, S. H.;Park, B. K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.26-29
    • /
    • 1992
  • In this study, We made use of interelectrode capacitively coupled type plasma polymerization apparatus in order to make th organic optical thin films. We adopted in Benzen. Styrene, which have optical function in the organic world. It is manufactured polymerization thin films and examined optics properties by it respectively. We have known that the refractive index decreased as discharging power increased. At the middle wave length as 550[nm], the refractive index of Styrene is smaller than one of Benzen. Then, it is known that measured results are valid because the extinction coefficient(K) is about 10$\^$-4/ for variation of refractive index.

  • PDF

Electrical Properties of Organic Thin Films by Deposition Type (유기박막의 누적형태에 따른 전기특성)

  • 송진원;이경섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.287-290
    • /
    • 2000
  • We give pressure stimulation into organic thin films and then manufacture a device under the accumulation condition that the state surface pressure is 20[mN/m]. LB layers of Arac. acid deposited by LB method were deposited onto y-type silicon wafer as x, y, z-type film. In processing of a device manufacture, we can see the process is good from the change of a surface pressure for organic thin films and transfer ratio of area per molecule. The structure of manufactured device is Au/arachidic acid/Al, the number of accumulated layers. Also, we then examined of the MIM device by means of I-V. The I-V characteristic of the device is measured from 0 to +2[V].

  • PDF

Characteristics of ZnO Thin Films Deposited with the Variation of Substrate Temperature and the Application As Buffer Layer in Organic Solar Cell (기판 온도 변화에 따라 증착되어진 ZnO 박막의 특성과 유기 태양전지의 버퍼층으로의 응용)

  • Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.648-651
    • /
    • 2015
  • The characterizations of zinc oxide (ZnO) buffer layers grown by unbalanced magnetron (UBM) sputtering under various substrate temperatures for inverted organic solar cells (IOSCs) were investigated. UBM sputter grown ZnO films exhibited higher crystallinity with increasing the substrate temperature, resulting in uniform and large grain size. Also, the electrical properties of ZnO films are improved with increasing substrate temperature. In the results, the performance of IOSCs critically depended on the substrate temperature during the film growth because the crystalllinity of the ZnO film affect the carrier mobility of the ZnO film.

Characteristics of VOx Thin Films Fabricated by Sputtering as Buffer Layer in Inverted Organic Solar Cell (역구조 유기태양전지 버퍼층 응용을 위한 스퍼터링 방법으로 제작된 VOx 박막의 특성 )

  • Seong-Soo Yang;Yong Seob Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.36-41
    • /
    • 2023
  • We investigated the properties of vanadium oxide (VOx) buffer layers deposited by a dual RF magnetron sputtering method under various target powers for inverted organic solar cells (IOSCs). Sputter fabricatged VOx thin films exhibited higher crystallinity with the increase of target power, resulting in a uniform and large grain size. The electrical properties of VOx films are improved with the increase of target power because of the increase of V content. In the results, the performance of IOSCs critically depended on the target power during the film growth because the crystalllinity of the VOx film affects the carrier mobility of the VOx film.

A Study on Development of One-channel Gas Sensor Using Polymeric Sensitive LB Films (고분자 감웅성 LB막을 이용한 One-channel 가스센서의 개발연구)

  • Kang, H.W.;Kim, J.M.;Kwon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.261-263
    • /
    • 1996
  • The study on the development of one-channel gas sensor using the quartz crystal analyzer were attempted. The adsorption and desorption behavior of organic gases were investigated using the resonant frequency and resistance method of quartz crystal. The sensitive materials were deposited on the quartz crystal analyzer(QCA) by using Langmuir-Blodgett method. To investigate the response characteristics of organic vapours and response mechanism, resonant frequency-resonant resistance (F-R) diagram was used. In our experimental results, the response mechanism between sensitive LB film and organic vapours was obtained using F-R diagram. And the position of each organic vapour were different as to the kind and injection amount. Thus F-R diagram can be applied to one-channel gas sensor using the QCA and useful to analyze the response mechanism between organic vspours and sensitive LB films.

  • PDF

Effects of Thermal Heat Treatment Process on the Ferroelectric Properties of ReMnO3 (Re:Ho, Er) Thin Films (ReMnO3(Re:Ho, Er) 박막의 강유전성에 미치는 열처리 공정의 영향)

  • Kim, Eung-Soo;Chae, Jung-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.763-769
    • /
    • 2005
  • Ferroelectric $ReMnO_3$(Re:Ho, Er) thin films were deposited on Si(100) substrate by Metal-Organic Chemical Vapor Deposition (MOCVD). Crystallinity and electric properties of $ReMnO_3$(Re:Ho, Er) thin films were investigated as a function of thermal heat treatment process, CHP (Conventional Heat-treatment Process) and RTP (Rapid Thermal Process). $ReMnO_3$(Re:Ho, Er) thin films prepared by RTP showed higher c-axis preferred orientation and homogeneous surface roughness than those prepared by CHP. The remnant polarization of ferroelectric hysteresis loop of $ReMnO_3$(Re:Ho, Er) thin films was strongly dependent on the c­axis preferred orientation of hexagonal single phase, and the leakage current characteristics of thin films were dependent on the homogeneity of grain size as well as surface roughness of thin films.

Electrical and Mechanical Properties of Indium-tin-oxide Films Deposited on Polymer Substrate Using Organic Buffer Layer

  • Han, Jeong-In;Lee, Chan-Jae;Rark, Sung-Kyu;Kim, Won-Keun;Kwak, Min-GI
    • Journal of Information Display
    • /
    • v.2 no.2
    • /
    • pp.52-60
    • /
    • 2001
  • The electrical and mechanical properties in indium-tin-oxide films deposited on polymer substrate were examined. The materials of substrates were polyethersulfone (PES) which have gas barrier layer and anti-glare coating for plastic-based devices. The experiments were performed by rf-magnetron sputtering using a special instrument and buffer layers. Therefore, we obtained a very flat polymer substrate deposited ITO film and investigated the effects of buffer layers, and the instrument. Moreover, the influences of an oxygen partial pressure and post-deposition annealing in ITO films deposited on polymer substrates were clarified. X-ray diffraction observation, measurement of electrical property, and optical microscope observation were performed for the investigation of micro-structure and electro-mechanical properties, and they indicated that as-deposited ITO thin films are amorphous and become quasi-crystalline after adjusting oxygen partial pressure and thermal annealing above $180^{\circ}C$. As a result, we obtained 20-25 ${\Omega}/sq$ of ITO films with good transmittance (above 80 %) of oxygen contents with under 0.2 % and vacuum annealing. Furthermore, using organic buffer layer, we obtained ITO films which have a rather high electrical resistance (40-45 ${\Omega}/sq$) but have improved optical (more than 85 %) and mechanical characteristics compared to the counterparts. Consequently, a prototype reflective color plastic film LCD was fabricated using the PES polymer substrates to confirm whether the ITO films could be realized in accordance with our experimental results.

  • PDF

Spin-coated ultrathin multilayers and their micropatterning using microfluidic channels

  • Hongseok Jang;Kim, Sangcheol;Jinhan Cho;Kookheon Char
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • A new method is introduced to build up organic/organic multilayer films composed of cationic poly(allylamine hydrochloride) (PAH) and negatively charged poly (sodium 4-styrenesulfonate) (PSS) using the spinning process. The adsorption process is governed by both the viscous force induced by fast solvent elimination and the electrostatic interaction between oppositely charged species. On the other hand, the centrifugal and air shear forces applied by the spinning process significantly enhances desorption of weakly bound polyelectrolyte chains and also induce the planarization of the adsorbed polyelectrolyte layer. The film thickness per bilayer adsorbed by the conventional dipping process and the spinning process was found to be about 4 ${\AA}$ and 24 ${\AA}$, respectively. The surface of the multilayer films prepared with the spinning process is quite homogeneous and smooth. Also, a new approach to create multilayer ultrathin films with well-defined micropatterns in a short process time is Introduced. To achieve such micropatterns with high line resolution in organic multilayer films, microfluidic channels were combined with the convective self-assembly process employing both hydrogen bonding and electrostatic intermolecular interactions. The channels were initially filled with polymer solution by capillary pressure and the residual solution was then removed by the .spinning process.