• Title/Summary/Keyword: Organic electrolyte-electroplating

Search Result 10, Processing Time 0.022 seconds

Effect of Additives on the Hardness of Copper Electrodeposits in Acidic Sulfate Electrolyte (황산구리 전착에서의 첨가제가 구리전착층의 경도에 미치는 영향)

  • Min, Sung-Ki;Lee, Jeong-Ja;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.143-150
    • /
    • 2011
  • Copper electroplating has been applied to various fields such as decorative plating and through-hole plating. Technical realization of high strength copper preplating for wear-resistant tools and molds in addition to these applications is the aim of this work. Brighters and levelers, such as MPSA, Gelatin, Thiourea, PEG and JGB, were added in copper sulfate electrolyte, and the effects of these organic additives on the hardness were evaluated. All additives in this work were effective in increasing the hardness of copper electrodeposits. Thiourea increased the hardness up to 350 VHN, and was the most effective accelarator in sulfate electrolyte. It was shown from the X-ray diffraction analysis that preferred orientation changed from (200) to (111) with increasing concentration of organic additives. Crystallite size decreased with increasing concentration of additive. Hardness was increased with decreasing crystallite size, and this result is consistent with Hall-Petch relationship, and it was apparent that the hardening of copper electrodeposits results from the grain refining effect.

Electrodeposition of Cobalt Nanowires

  • Ahn, Sungbok;Hong, Kimin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.927-930
    • /
    • 2013
  • We developed an electroplating process of cobalt nanowires of which line-widths were between 70 and 200 nm. The plating electrolyte was made of $CoSO_4$ and an organic additive, dimethyldithiocarbamic acid ester sodium salt (DAESA). DAESA in plating electrolytes had an accelerating effect and reduced the surface roughness of plated cobalt thin films. We obtained void-free cobalt nanowires when the plating current density was 6.25 mA/$cm^2$ and DAESA concentration was 1 mL/L.

Magnetic Properties of Thin Cu/Co Multilayers Made by Electrodeposition

  • Lee, Jung-Ju;Lee, Jin-Han;Hong, Kim-In
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.118-121
    • /
    • 2005
  • We have investigated the magnetic properties of electroplated thin Cu/Co multilayers by using electrolytes made of copper sulphate and cobalt sulphate and by applying alternating plating voltage. While the multilayers plated with pure electrolyte showed superparamagnetism, those plated with organic additives showed ferromagnetic behavior. These changes are attributed to the so-called 'self-annealing' effect and reduction of grain size caused by the organic additives.

Property Change by Organic Additives in Electroplated Nickel-copper Thin Films (유기첨가제에 의한 전기도금 니켈-구리 박막의 물성변화)

  • Lee, Jung-Ju;Hong, Ki-Min
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.3
    • /
    • pp.198-201
    • /
    • 2005
  • We investigated the effects of organic additives on the properties of nickel-copper thin films prepared by electroplating. Compared with thin films fabricated by pure electrolyte only, the films utilizing organic additives show different crystalline orientations. With no alteration of plating conditions simply adding the organic materials changed the composition of copper and nickel. The concentration of nickel could be varied to $65-95\%$ depending on the species and concentration of the additives. The change of material property has contributed to the increase or decrease of the magnetoresistance.

Effects of Organic Additives on Residual Stress and Surface Roughness of Electroplated Copper for Flexible PCB

  • Kim, Jongsoo;Kim, Heesan
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.154-158
    • /
    • 2007
  • For the application of flexible printed circuit board (FPCB), electroplated copper is required to have low surface roughness and residual stress. In the paper, the effects of surface roughness and residual stress of electroplated copper as thick as $8{\mu}m$ were studied on organic additives such as inhibitor, leveler and accelerator. Polyimide film coated with sputtered copper was used as a substrate. Surface roughness and surface morphology were measured by 3D-laser surface analysis and FESEM, respectively. Residual stress was calculated by Stoney's equation after measuring radius curvature of specimen. The addition of additives except high concentration of accelerator in the electrolyte decreased surface roughness of electroplated copper film. Such a tendency was explained by the function of additives among which the inhibitor and the leveler inhibit electroplating on a whole surface and prolusions, respectively. The accelerator plays a role in accelerating the electroplating in valley parts. The inhibitors and the leveler increased residual stress, whereas the accelerator decreased it. It was thought to be related with entrapped additives on electroplated copper film rather than the preferred orientation of electroplated copper film. The reason why additives lead to residual stress remains for the future work.

Properties Change of Electroplated Permalloy Thin Films by Organic Additives (유기첨가제에 의한 전기도금 퍼말로이 박막의 물성변화)

  • Bang, Won-Bae;Bae, Jong-Hak;Hong, Ki-Min;Chung, Jin-Seok;Ko, Young-Dong;Lee, Hee-Bok
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.133-136
    • /
    • 2007
  • We investigated the changes of the magnetic properties in electroplated Permalloy thin films by a few organic additives added to the plating electrolytes. Under identical electroplating conditions, the crystalline orientations and the surface roughness of the plated thin films were different from those prepared with a pure electrolyte. These property changes reduced the coercivity and increased the magnetoimpedance ratio (MIR) up to 20%.

Preparation and Characterization of a Sn-Anode Fabricated by Organic-Electroplating for Rechargeable Thin-Film Batteries (유기용매 전해조를 이용한 리튬이차박막전지용 Sn 음극의 제조)

  • Kim, Dong-Hun;Doh, Chil-Hoon;Lee, Jeong-Hoon;Lee, Duck-Jun;Ha, Kyeong-Hwa;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Hwang, Young-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.284-288
    • /
    • 2008
  • Sn-thin film as high capacitive anode for thin film lithium-ion battery was prepared by organic-electrolyte electroplating using Sn(II) acetate. Electrolytic solution including $Li^+$ and $Sn^{2+}$ had 3 reduction peaks at cyclic voltammogram. Current peak at $2.0{\sim}2.5\;V$ region correspond to the electroplating of Sn on Ni substrate. This potential value is lower than 2.91 V vs. $Li^+/Li^{\circ}$, of the standard reduction potential of $Sn^{2+}$ under aqueous media. It is the result of high overpotential caused by high resistive organic electrolytic solution and low $Sn^{2+}$ concentration. Physical and electrochemical properties were evaluated using by XRD, FE-SEM, cyclic voltammogram and galvanostatic charge-discharge test. Crystallinity of electroplated Sn-anode on a Ni substrate could be increased through heat treatment at $150^{\circ}C$ for 2 h. Cyclic voltammogram shows reversible electrochemical reaction of reduction(alloying) and oxidation(de-alloying) at 0.25 V and 0.75 V, respectively. Thickness of Sn-thin film, which was calculated based on electrochemical capacity, was $7.35{\mu}m$. And reversible capacity of this cell was $400{\mu}Ah/cm^2$.

A Study on the Deposit Uniformity and Profile of Cu Electroplated in Miniaturized, Laboratory-Scale Through Mask Plating Cell for Printed Circuit Board (PCBs) Fabrication

  • Cho, Sung Ki;Kim, Jae Jeong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.108-113
    • /
    • 2016
  • A miniaturized lab-scale Cu plating cell for the metallization of electronic devices was fabricated and its deposit uniformity and profile were investigated. The plating cell was composed of a polypropylene bath, an electrolyte ejection nozzle which is connected to a circulation pump. In deposit uniformity evaluation, thicker deposit was found on the bottom and sides of substrate, indicating the spatial variation of deposit thickness was governed by the tertiary current distribution which is related to $Cu^{2+}$ transport. The surface morphology of Cu deposit inside photo-resist pattern was controlled by organic additives in the electrolyte as it led to the flatter top surface compared to convex surface which was observed in the deposit grown without organic additives.

Organic additive effects in physical and electrical properties of electroplated Cu thin film

  • Lee, Yeon-Seung;Lee, Yong-Hyeok;Gang, Seong-Gyu;Ju, Hyeon-Jin;Na, Sa-Gyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.48.1-48.1
    • /
    • 2010
  • Cu has been used for metallic interconnects in ULSI applications because of its lower resistivity according to the scaling down of semiconductor devices. The resistivity of Cu lines will affect the RC delay and will limit signal propagation in integrated circuits. In this study, we investigated the characteristics of electroplated Cu films according to the variation of concentration of organic additives. The plating electrolyte composed of $CuSO_4{\cdot}5H_2O$, $H_2SO_4$ and HCl, was fixed. The sheet resistance was measured with a four-point probe and the material properties were investigated with XRD (X-ray Diffraction), AFM (Atomic Force Microscope), FE-SEM (Field Emission Scanning Electron Microscope) and XPS (X-ray Photoelectron Spectroscopy). From these experimental results, we found that the organic additives play an important role in formation of Cu film with lower resistivity by EPD.

  • PDF

Effects of PEG addition as an additive for electroplating of Cu at high current density (고전류밀도 전해도금 공정에서 PEG 첨가 효과)

  • Byeoung-Jae Kang;Jun-Seo Yoon;Jong-Jae Park;Tae-Gyu Woo;Il-Song Park
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.4
    • /
    • pp.274-284
    • /
    • 2024
  • In this study, copper foil was electroplated under high current density conditions. We used Polyethylene Glycol (PEG), known for its thermal stability and low decomposition rate, as an inhibitor to form a stable and smooth copper layer on the titanium cathode. The electrolyte was composed of 50 g/L CuSO4 and 100 g/L H2SO4, MPSA as an accelerator, JGB as a leveler, and PEG as a suppressor, and HCl was added as chloride ions for improving plating efficiency. The copper foil electroplated in the electrolyte added PEG which induced to inhibit the growth of rough crystals. As a result, the surface roughness value was reduced, and a uniform surface was formed over a large area. Moreover, the addition of PEG led to priority growth to the (111) plane and the formation of polygonal crystals through horizontal and vertical growth of crystals onto the cathode. In addition, the grains became fine when more than 30 ppm of PEG was added. As the microcrystalline structure changed, mechanical and electrical properties were altered. With the addition of PEG, the tensile strength increased due to grain refinement, and the elongation was improved due to the uniform surface. However, as the amount of PEG added increased, the corrosion rate and resistivity increased due to grain refinement. Finally, it was possible to manufacture a copper foil with excellent electrical and mechanical properties and the best surface properties when electroplating was carried out under the condition of additives with Cl-20 ppm, MPSA 10 ppm, JGB 5 ppm, and PEG 10 ppm.