• Title/Summary/Keyword: Organic compost

Search Result 668, Processing Time 0.031 seconds

Effect of Artificial Zeolite on Fermentation and Emission of Ammonia and Methane during Animal Waste Composting (인공제올라이트 처리가 가축분 퇴비의 발효 및 암모니아, 메탄가스 발생에 비치는 영향)

  • Lee, Deog-Bae;Kim, Jong-Gu;Lee, Kyung-Bo;Lee, Sang-Bok;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.5
    • /
    • pp.361-368
    • /
    • 2000
  • This study was carried out to investigate the influence of artificial zeolite on the change of temperature, gas emission, water content and chemical properties during the composting process with the mixture of animal feces, broken bark and extruded rice hull. Artificial zeolite was added 0, 0.5, 1, 3 and 5% volume of the raw composting material, and proceeded 1.2m every day with mobile stacking escalator. Temperature was increased, and water content was decreased in the composting pile by addition of artificial zeolite. This caused to accelerate decomposition of organic matter during composting. $NH_3$ was emitted the highest at 6th day after stacking, then decreased gradually. And addition of artificial zeolite caused to decrease greatly in $NH_3$ emission from composting pile. As result of this, content of nitrogen in the compost was increased by addition of artificial zeolite. Emission of $CH_4$ was the highest at early stacking stage, and that was decreased drastically at 8th day. Emission of $CH_4$ was also decreased greatly by addition of artificial zeolite at 5th days after stacking. It may be resulted from adsorption of $CH_4$ into the molecular sieve structure of artificial zeolite and low water content by high temperature fermentation.

  • PDF

Effects of TLB Microbial fertilizer application on Soil Chemical Properties, Microbial Flora and Growth of Chniese Cabbage (Brassica Compestris subsp. napus var. pekinensis MAKINO) (미생물제 비료시용이 배추의 생육과 토양 화학성 및 미생물상에 미치는 영향)

  • Yun, Sei-Young;Shin, Joung-Du
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.8-16
    • /
    • 2001
  • This experiment was conducted to investigate the effects on plant growth, soil chemical properties and microbial flora with microbial fertilizer to chinese cabbage cultivation. The plant growth was promoted and the yield increased by application of Tian Li Bao(TLB) microbial fertilizer as compared with the control. However, yield a littler decreased in case of the reduced amount of urea application as a top dressing and half of compost chicken manure as a basial fertilizer even if treated with TLB microbial fertilizer. Organic matter and total nitrogen contents decreased as compared to those in the control, and total nitrogen ranged in 0.76~1.44% in the treatments at harvesting time, and decreased with application of TLB microbial fertilizer compared to that of the control. The available phosphorus content in the field before experiment was 559ppm, but it was 755ppm and 653 in the control and treatments at harvesting time, respectively. Therefore, it was shown that phosphorus content in the treatment was lower than that of the control. On the other hand, total nitrogen, phosphorous and K ranged from 2.62 to 2.94%, from 1.48 to 1.55% and from 3.60 to 4.38% in plants after harvest, respectively. There were no significant differences among the treatments. For the soil microbial flora, the population of bacteria in the treatments decreased with application of microbial fertilizer as compared with the control over all cultivation periods. It was shown that the population of pseudomonas spp. was over 3 times higher than that of the control after harvesting. The population of actinomycetes didn't show difference among the treatments, but high density of fungi after harvesting were observed in the treatments.

  • PDF

Influence of Diagnostic Fertilization and Subsoil Breaking on Soil physico-chemical Properties in Direct Seeding of Rice on Flooded Paddy Surface (벼 담수표면 직파재배시 진단시비와 심토파쇄가 토양이화학성 및 벼 생육에 미치는 영향)

  • Yoo, Chul-Hyun;Ryu, Jin-Hee;Yang, Chang-Hyu;Kim, Taek-Kyum;Kang, Seung-Weon;Kim, Jae-Duk;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.334-338
    • /
    • 2006
  • This study was conducted to evaluate the effect of improvement of soil physical properties such as deep plowing, subsoil breaking and diagnostic fertilization on the yield of rice and nitrogen-use efficiency in direct seeding on flooded paddy surface of rice. The effects of deep plowing, subsoil breaking and diagnostic application of N, P, K fertilizers, Latex coated urea(LCU), compost, silicate were investigated. The soil physical properties, such as bulk density, hardness and porosity were improved and the content of organic matter and available $SiO_2$ were also increased by deep plowing and subsoil breaking. The amount of $NH_4-N$ in soil was highly increased by diagnostic fertilization and deep plowing at 5th leaf stage. The nitrogen-use efficiency was the highest at the diagnostic application of LCU 70% applied as basal dressing with subsoil breaking. The yield of rice increased by 8% under the diagnostic application of LCU 70% applied as basal dressing with subsoil breaking compared with the conventional application.

Effects of Granular Silicate on Watermelon (Citrullus lanatus var. lanatus) Growth, Yield, and Characteristics of Soil Under Greenhouse

  • Kim, Young-Sang;Kang, Hyo-Jung;Kim, Tae-Il;Jeong, Taek-Gu;Han, Jong-Woo;Kim, Ik-Jei;Nam, Sang-Young;Kim, Ki-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.456-463
    • /
    • 2015
  • The objective of this study was to determine the effects of granular type of silicate fertilizer on watermelon growth, yield, and characteristics of soil in the greenhouse. Four different levels of silicate fertilizer, 0(control), 600, 1,200, $1,800kg\;ha^{-1}$ were applied for experiment. The silicate fertilizer was applied as a basal fertilization before transplanting watermelon. Compost and basal fertilizers were applied based on the standard fertilizer recommendation rate with soil testing. All of the recommended $P_2O_5$ and 50% of N and $K_2O$ were applied as a basal fertilization. The N and $K_2O$ as additional fertilization was split-applied twice by fertigation method. Watermelon (Citrullus lanatus Thunb.) cultivar was 'Sam-Bok-KKuol and main stem was from rootstock (bottle gourd: Lagenaria leucantha Standl.) 'Bul-Ro-Jang-Sang'. The watermelon was transplanted on April, 15. Soil chemical properties, such as soil pH, EC, available phosphate and exchangeable K, Mg, and available $SiO_2$ levels increased compared to the control, while EC was similar and the concentrations of soil organic matter decreased. Physical properties of soils, such as soil bulk density and porosity were not different among treatments. The growth characteristics of watermelon, such as stem diameter, fresh and dry weight of watermelon at harvest were thicker and heavier for silicate treatment than the control, while number of node was shorter than the control. Merchantable watermelon increased by 3-5% compared to the control and sugar content was 0.4 to $0.7^{\circ}Brix$ higher than the control. These results suggest that silicate fertilizer application in the greenhouse can improve some chemical properties of soils and watermelon stem diameter and dry weight, which are contributed to watermelon quality and marketable watermelon production.

The Verification Of Green Soil Material Characteristics For Slope Protection (사면 보호를 위한 녹생토 재료 특성 검증)

  • Lee, Byung-Jae;Heo, Hyung-Seok;Noh, Jae-Ho;Jang, Young-Il
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.681-692
    • /
    • 2017
  • In recent years, large-scale construction projects such as road pavement construction and new city construction have been carried out nationwide with by the expansion of social overhead facilities and base on the economic development planning, resulting in a rapid increase in artificial slope damage. The existing vegetation-based re-installation method of the slope surface greening method reveals various problems such as lack of bonding force, drying, and lack of organic matter. In this study, research was carried out using vegetation-based material and environmentally friendly soil additives, were are used in combination with natural humus, Bark compost, coco peat, and vermiculite. Uniaxial compressive strength was measured according to the mixing ratio of soil additives and the strength was analyzed. Experiments were carried out on the characteristics of the soil material to gauge the slope protection properties by using the soil compaction test method wherein the soil and the soil additive materials are mixed in relation to the soil height, the number of compaction, the compaction method (layer) and the curing condition. As a result of the experiment, excellent strength performance was demonstrated in soil additives using gypsum cement, and it satisfied vegetation growth standards by using performance enhancer and pH regulator. It was confirmed that the strength increases with the mixing of soil and soil additive, and the stability of slope protection can be improved.

Studies on Persistence of Pesticides in Soils and Crops under Polyethylene Film Mulching Culture - I. Effect of Polyethylene Film mulching on Change of Soil Environment (폴리에틸렌 멀칭재배시(栽培時) 농약(農藥)의 토양(土壤) 및 작물체중(作物体中) 잔류(殘留)에 관한 연구(硏究) - 제(第) 1 보(報) 토양환경상(土壤環境相)에 미치는 폴리에틸렌 피복(被覆)의 영향(影響))

  • Ryang, H.S.;Moon, Y.H.;Kim, N.E.;Lee, J.H.
    • Korean Journal of Weed Science
    • /
    • v.7 no.3
    • /
    • pp.299-305
    • /
    • 1987
  • In the polythylene film mulching(P.E. mulching) culture, soil temperature ranked in the order of clear P.E.-, black P.E.-, and non-mulching. The difference in temperature between P.E mulching and non-mulching conditions was greatest in maximum temperature in fine day. Under the dry season, soil water content ranked in the order of black P.E.-, clear P.E.- and non-mulched soil. Under the rainy season, however, the content in non-mulched soil was higher than in the mulched soils, while there was little difference between the two colored films. In three phases of soil, liquid phase ratio was higher and gaseous phase ratio was lower in mulched soil than in non-mulched soil under the dry season. However, the opposite result was observed under the rainy season. The content of soil organic matter in red pepper field applied with the compost and mixed-fertilizer ranked in the order of black P.E.-, clear P.E.- and non-mulching conditions. However, the content between mulching and non-mulching differed little in peanut field applied with mixed-fertilizer. In red pepper field, soil nitrogen content in mulching conditions slightly differed from that in non-mulching conditions during the dry season. The soil nitrogen content decreased rapidly 86 days after fertilizer application during the rainy season. In peanut field, there was little difference in the content between the two conditions. The nitrogen content in the leaves of red pepper and peanut was much higher in P.E mulching than in non-mulching.

  • PDF

Monitoring of Feed-Nutritional Components, Toxic Heavy Metals and Pesticide Residues in Mushroom Substrates According to Bottle Type and Vinyl Bag Type Cultivation (버섯의 봉지재배 및 병재배 시 재배단계별 배지의 사료영양적 성분, 독성중금속 및 잔류농약 모니터링)

  • Kim, Y.I.;Bae, J.S.;Huh, J.W.;Kwak, W.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.67-78
    • /
    • 2007
  • This study was carried out to monitor feed-nutritional components, toxic heavy metals (Cd, Pb and As) and pesticide residues through three cultivation stages (1st initial culture stage, 2nd mycelial growth stage, and 3rd fruit body-harvested stage) of king oyster mushroom (Pleurotus eryngii) produced by bottle type cultivation and oyster mushroom (Pleurotus osteratus) produced by vinyl bag type cultivation. For both cultivation types, compared with the initial culture, the weight reduction rate in spent mushroom substrates (SMS) after fruit body harvest was 29% for total wet mass, 21~25% for dry and organic matters and 19 ~22% for neutral detergent fiber. Two thirds to 3/4 of organic matter degraded and utilized by mycelia and fruit bodies was originated from fiber, of which the primary source (50~70%) was hemicellulose. The effect of mycelial growth stage on chemical compositional change in culture was little (P>0.05) for bottle type cultivation of king oyster mushroom but considerable (P<0.05) for vinyl type cultivation of oyster mushroom. Culture nutrients uptake by fruit bodies was very active for the bottle type cultivation. Compared with SMS, harvested fruit bodies (mushrooms) contained higher (P<0.05) crude protein, non-fibrous carbohydrate, and crude ash and lower (P<0.05) neutral detergent fiber. Regardless of stages, no culture samples were contaminated with toxic heavy metals and pesticide residues. In conclusion, the increase of fiber (neutral and acid detergent fibers) and indigestible protein contents and the decrease of true protein content in SMS indicated that the feed-nutritional value of SMS was significantly reduced compared with that of the initial culture and they were safe from toxic heavy metals and pesticide residues.

Composting of Livestock Waste and Development of Operating Parameters I. Development of Optimum Process Parameters in Cow Manure Composting (축산 폐기물의 퇴비화 및 운용지표 개발 I. 우분의 퇴비화에 있어서 최적 공정운용지표의 개발)

  • Chung, Jae-Chun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.1 no.1
    • /
    • pp.69-84
    • /
    • 1993
  • In order to determine the optimum operational paramsters in cow manure composting, 4 laboratory scale composters were established. The cow manure was mixed with certain amount of saw dust to adjust the initial C/N ratio to 24, initial pH to 6.9 and composting was performed with varying operational conditions. It was found that the optimum aeration rate was 1000 ml/min kg. VS, the optimum moisture content 50% and no significant difference was found with different initial pH condition. Microorganisms were counted under the optimum conditions determined in this study. At the end of the experimental period, the number of bacteria, actinomycetes and fungi was $1.5{\times}10^9$ cells, $1.1{\times}10^8$ cells and $3.0{\times}10^8$ cells/g dry compost, respectively. At day 0, the number of coliforms, fecal coliforms and fecal streptococci was $3.1{\times}10^3$ cells, $7.5{\times}10^2$ cells and $5.6{\times}103$ cells/g dry composting material, respectively. Their population was decreased with time lapse, However, their survival time was longer than those reported by other researchers. Microorganisms were identified at the end of the experiment. Genus Bacillus was the most dominant comprising 89.3% of the total population. Among the Genus Bacillus, B. circulans compoex was the most abundant, followed by B. Stearothermophilus, B. Sphericus, B. licheniformis and B, brevis.

  • PDF

Livestock Manure Nutrients Flow Analysis of Integrated Crop-Livestock Farming Model Reflecting the Regional Characteristics (지역특성을 고려한 경축순환농업 모형의 가축분뇨 양분 흐름분석)

  • Lee, Joon Hee;Choi, Hong Lim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.36-46
    • /
    • 2015
  • Integration of crop-livestock farming has been a problem-solving mode for abatement of environmental pollution and recovery of resources in recent years. The objectives of this study were 1) to suggest the customized integration of crop-livestock farming model reflecting the regional characteristics through in-depth analysis of case study and 2) to analyze the livestock nutrients flow in terms of three primary elements as nitrogen(N), phosphorous(P), and potassium(K). The personal interview and survey were carried out in 2012 for a total of 161 farms from four different regions(NS, NW, JJ, YC) in South Korea. The mass balance analysis was used to suggest and evaluate the models for two sites(JJ and YC). The results showed that NS and NW sites produced relatively more livestock manure than the sites of YC and JJ because of the regional differences in livestock numbers and urbanization. The models were suggested for the site JJ and site YC, and 'two track model(energy and resource recovery)' and 'dispersal type model' were assigned respectively. For the nutrient flows, the releasing P and K with new models had increased up to 7%, while N release had decreased down to 15% in both YC and JJ sites compared to the present treatment system. Estimated value showed that there was oversupply of N (719 ton/yr) and $P_2O_5$ (1,269 ton/yr) in YC and deficiency of N (671 ton/yr) and excessive $P_2O_5$ (32 ton/yr) in JJ respectively. Therefore, P runoff has to be considered an eutrophication occurs in rural small stream when an integration of crop-livestock farm system is applied into both sites.

On-the-spot Observation and Nutrient Dynamics at Rice Paddy Fields in Seven of Large-scale Environment-friendly Agricultural Districts (광역친환경 논 농업단지 7개소 현장실사 및 양분동태)

  • Choi, Hyun-Sug;Jung, Seok-Kyu
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.2
    • /
    • pp.235-251
    • /
    • 2016
  • After carrying out on-the-spot observation targeting each farmhouse of large-scale environment-friendly agricultural district (LEAD), Suncheon, Sancheong, Jangheung, Yeongam, Hamyang, Okcheon, and Jeongseon in 2015, only one LEAD, a farmhouse in Jangheung had used sustainable compost coming out under their own non-antibiotic livestock. The soil pH and EC at a depth of 0-20 cm in the seven LEADs were ranged between 5.3-6.6 and $0.4-1.2dS\;m^{-1}$, respectively, with 0.03- 0.27% for T-N concentration, $22-322mg\;kg^{-1}$ for P, and $0.05-0.29mg\;kg^{-1}$, which were, in particular, low a farmhouse in Jeongseon. When intensively surveying on each farmhouse of Suncheon, Jangheung, and Okcheon for a growing period, seasonal soil pH was maintained above 6.0 and high in a farmhouse in Okcheon, with similar soil EC observed among the three LEADs. Seasonal soil T-N was 0.1% higher on the farmhouse in Suncheon than other two LEADs, with higher seasonal soil P observed on the farmhouse in Okcheon and higher soil K in the Jangheung. T-N concentration in rice (Oryza sativa L.) crops was the highest in Jangheung, and concentrations of T-N, P, and K decreased in a season. Plant height and number of tillers per hill were the highest on the farmhouse in Okcheon, where was similar or low plant diameter and SPAD levels compared to other two LEADs. Dry weight (DW) before harvest was ranged between 52-63 g, and DW, rough rice yield (kg), brown rice/rough rice (%), brown rice yield (kg), head rice (%), and broken rice (%) were not significantly different among the three LEADs. Total annual gross production ha-1 was the highest on the farmhouse in Okcheon (16,230,000 won) planting with high class of variety, 'Milky queen' at early maturation, which was expected to be increased on an agricultural income. However, high amount of fertilizer was applied for growing the following crops on the farmhouse in Okcheon, affecting the highest balance of T-N, P, and K more than $200kg\;ha^{-1}$.