• Title/Summary/Keyword: Organic binder

Search Result 213, Processing Time 0.025 seconds

Relation between Thermal Emissivities and Alignment Degrees of Graphite Flakes Coated on an Aluminum Substrate (알루미늄 기판에 코팅된 흑연입자의 배향도 변화와 열방사율 변화의 관계)

  • Kang, Dong Su;Lee, Sang Min;Kim, Suk Hwan;Lee, Sang Woo;Roh, Jae Seung
    • Korean Journal of Materials Research
    • /
    • v.24 no.3
    • /
    • pp.159-165
    • /
    • 2014
  • This study is research on the thermal emissivity depending on the alignment degrees of graphite flakes. Samples were manufactured by a slurry of natural graphite flakes with organic binder and subsequent dip-coating on an aluminum substrate. The alignment degrees were controlled by applying magnetic field strength (0, 1, and 3 kG) to the coated samples. The alignment degree of the sample was measured by XRD. The thermal emissivity was measured by an infrared thermal image camera at $100^{\circ}C$. The alignment degrees were 0.04, 0.11, and 0.17 and the applied magnetic field strengths were 0, 1, and 3 kG, respectively. The thermal emissivities were 0.829, 0.837, and 0.844 and the applying magnetic field strengths were 0, 1, and 3 kG, respectively. In this study the correlation coefficient, $R^2$, between thermal emissivity and alignment degree was 0.997. Therefore, it was concluded that the thermal emissivities are correlated with the alignment degree of the graphite flakes.

Laser Cladding with Al-36%Si Powder Paste on A319 Al Alloy Surface to Improve Wear Resistance (A319 알루미늄 합금 표면에 Al-36%Si 합금분말의 레이저 클래딩에 의한 내마모성 향상)

  • Lee, Hyoung-Keun
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.58-62
    • /
    • 2017
  • A319 aluminum alloy containing 6.5% Si and 3.5% Cu as major alloying elements has been widely used in machinery parts because of its excellent castability and crack resistance. However it needs more wear resistance to extend its usage to the severe wear environments. It has been known that hyper-eutectic Al-Si alloy having more than 12.6% Si contains pro-eutectic Si particles, which give better wear resistance and lubrication characteristics than hypo-eutectic Al-Si alloy like A319 alloy. In this study, it was tried to clad hyper-eutectic Al-Si alloy on the surface of A319 alloy. In the experiments, Al-36%Si alloy powder was mixed with organic binder to make a fluidic paste. The paste was screen-printed on the A319 alloy surface, melted by pulsed Nd:YAG laser and alloyed with the A319 base alloy. As experimental parameters, the average laser power was changed to 111 W, 202 W and 280 W. With increasing the average laser power, the melting depth was changed to $142{\mu}m$, $205{\mu}m$ and $245{\mu}m$, and the dilution rate to 67.2 %, 72.4 % and 75.7 %, and the Si content in the cladding layer to 16.2 %, 14.6 % and 13.7 %, respectively. The cross-section of the cladding layer showed very fine eutectic microstructure even though it was hyper-eutectic Al-Si alloy. This seems to be due to the rapid solidification of the melted spot by single laser pulse. The average hardness for the three cladding layers was HV175, which was much higher than HV96 of A319 base alloy. From the block-on-roll wear tests, A319 alloy had a wear loss of 5.8 mg, but the three cladding layers had an average wear loss of 3.5 mg, which meant that an increase of 40 % in wear resistance was obtained by laser cladding.

An Experimental Study for Effect Organic/Inorganic Hybrid based Durability Promoting Agent(DPA) on the Properites of concrete (유무기 복합형 내구성개선제가 콘크리트 물성에 미치는 효과에 대한 실험적 연구)

  • Kim, Do-Su;Khil, Bae-Su;Kim, Woo-Jae;Kim, Sung-Su;Jeong, Yong;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.801-804
    • /
    • 2008
  • Performance for the resistant to chlorides penetration is required in order to increase durability of seaside construction. For this reason, it is important to acquire simultaneously watertightness, resistance for crack of concrete and chemical fixation effect of chloride in it. In this study, High durability promoting agents(HD) consist of inorganic salt and active components were applied to enhancing resistance for chloride ion penetration against concrete based on mix(composition of binder : OPC+SLG) of seaside construction. Tang's experimental method was utilized to investigate the resistances of chloride ion penetration of concrete such as chloride ion diffusion coefficient and penetration depth. It was confirmed that resistance of chloride ion penetration of concrete by 0.6% addition of HD was improved to $11.3^{\sim}20.5$% than non-added concrete.

  • PDF

Effects of Surface-modification of Carbon Black on the Characteristics of Polymerized Toner (카본블랙의 표면개질이 중합토너의 특성에 미치는 영향)

  • Lee, Eun Ho;Kim, Dae Su
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.628-633
    • /
    • 2013
  • Carbon black was surface-modified to prepare styrene-based suspension polymerized toner with excellent carbon black dispersibility inside toner particles. Carbon black was oxidized first to introduce hydroxyl groups on the surfaces, then esterification between the hydroxyl groups and carboxyl groups of organic acids (oleic acid, palmitic acid, acrylic acid) was followed to obtain organically surface-modified carbon black. The surface-modification of carbon black was confirmed by FTIR. Apparent carbon black dispersibility in the monomer mixture of the binder resin was tested and the particle size of dispersed carbon black was measured by particle size analyzer. Optical micrographs showed that carbon black dispersibility inside toner particles was improved considerably when the carbon black surfacemodified with oleic acid was used. The polymerized toner prepared with the carbon black surface-modified with oleic acid showed ideal particle size and size distribution as a toner.

Effects of Sputtering Condition on Structural Properties of PZT Thin Films on LTCC Substrate by RF Magnetron Sputtering (저온동시소성세라믹 기판 위에 제작된 PZT 박막의 증착조건이 박막의 구조적 특성에 미치는 영향)

  • Lee, Kyung-Chun;Hwang, Hyun-Suk;Lee, Tae-Yong;Hur, Won-Young;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.297-302
    • /
    • 2011
  • Recently, low temperature co-fired ceramic (LTCC) technology is widely used in sensors, actuators and microsystems fields because of its very good electrical and mechanical properties, high reliability and stability as well as possibility of making 3D micro structures. In this study, we investigated the effects of sputtering gas ratio and annealing temperature on the crystal structure of $Pb(ZrTi)O_3$ (PZT) thin films deposited on LTCC substrate. The LTCC substrate with thickness of $400\;{\mu}m$ were fabricated by laminating 4 green tapes which consist of alumina and glass particle in an organic binder. The PZT thin films were deposited on Pt / Ti / LTCC substrates by RF magnetron sputtering method. The results showed that the crystallization of the films were enhanced as increasing $O_2$ mixing ratio. At about 25% $O_2$ mixing ratio, was well crystallized in the perovskite structure. PZT thin films was annealed at various temperatures. When the annealing temperature is lower, the PZT thin films become a phyrochlore phase. However, when the annealing temperature is higher than $600^{\circ}C$, the PZT thin films become a perovskite phase. At the annealing temperature of $700^{\circ}C$, perovskite PZT thin films with good quality structure was obtained.

Study on the Magnetic Shield Effect of Carbon-based Materials at Extremely Low Frequency (탄소계 소재를 이용한 극저주파 영역에서의 자기 차폐효과 연구)

  • Oh, Seong Moon;Kang, Dong Su;Lee, Sang Min;Baek, Un Gyeong;Roh, Jae Seung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • To examine the magnetic shielding effect for carbon-based materials at extremely low frequencies (60 Hz), two types of carbon black (Super-P and Denka Black) and a natural graphite (HC-198) were mixed into organic binder at 10 wt.% to produce a coating solution, and a powder coating with varying thickness was applied on an aluminum disk measuring 88 mm in radius. A device was developed to measure the sheielding effect at extremely low frequencies. A closed circuit was achieved by connecting a transformer and a resistor. The applied voltage was fixed at 65 V, and the magnetic field was measured to being the range of 4.95~5.10 mG. Depending on the thickness of the coating layer, the magnetic field showed a decreasing trend. The maximum decrease in the magnetic field of 38.3% was measured when natural graphite was coated with specimens averaging $455{\mu}m$. This study confirmed that carbon-based materials enable magnetic shielding at extremely low frequencies, and that the magnetic shielding effect can be enhanced by varying the coating thickness.

Optimization of Printing Process for the Development of Metal-oxide Resistivity Sensor (전기저항형 금속산화물 센서의 인쇄공정 최적화에 관한 연구)

  • Lee, Seokhwan;Koo, Jieun;Lee, Moonjin;Jung, Jung-Yeul;Chang, Jiho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.353-358
    • /
    • 2016
  • In this paper, we have studied about the optimum fabrication condition of the printed Indium Tin Oxide (ITO) layers for the electrical resistance-type sensor application. We have investigated on the substrates surface treatments, mixing ratio of organic binder/ITO powder, and viscosity of the printing paste to determine the optimum condition of the screen printed ITO layer. Also, we found that the printing condition is closely related with the sensor performance. To know the feasibility of printed ITO layer as an electrical resistance-type sensor, we have fabricated the ITO sensors with a printed and sputtered ITO layers. The printed ITO films revealed $10^2$ times higher sensitivity than the sputtered ITO layer. Also, the sputtered ITO layer exhibited an operating temperature of $127^{\circ}C$ at the operating voltage of 5 V. While, in case of the printed ITO layer showed the operating temperature of $27.6^{\circ}C$ in high operating voltage of 30 V. We found that the printed ITO layer is suitable for the various sensor applications.

Electrical Properties of Thick-Film Resistor Prepared by Using RuO2-Glass Composite Powder (RuO2-유리 복합분말을 이용하여 제조된 후막 저항의 전기적 특성 연구)

  • Kim, Min-Sik;Ryu, Sung-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.301-307
    • /
    • 2017
  • The purpose of this study is to investigate the electrical properties of thick-film resistor (TFR) prepared from $CaO-ZnO-B_2O_3-Al_2O_3-SiO_2$ (CZBAS) glass containing $RuO_2$ particles. $RuO_2$-glass composite powder was made by mixing and melting oxide powders of constituents. For comparison, $RuO_2$ powder was simply mixed with glass powder. $RuO_2$-40wt% glass composite and mixture were dispersed in an organic binder to obtain printable resistor paste and then thick-film was formed by screen printing, followed by sintering at the range between $750^{\circ}C$ and $900^{\circ}C$ for 10 min with a heating rate of $50^{\circ}C/min$ in an ambient atmosphere. $RuO_2$-glass composite sample showed much higher resistance compared to the simple mixed sample. This could be attributed to the difference in conducting mechanism. After sintering at $850^{\circ}C$, temperature coefficient of resistance of composite sample was lower than that of simple-mixed sample. TFR with dense and homogeneous microstructure could be obtained by using $RuO_2$-glass composite powder.

Surface Coating of SiO2 on TiO2-natural Zeolite Composite Particles and Its Characterization (실리카 코팅된 TiO2-천연 제올라이트 복합입자 제조와 특성평가)

  • Lim, Hyung-Mi;Jung, Ji-Sook;Lee, Dong-Jin;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.692-697
    • /
    • 2006
  • Deodorization of natural zeolites have been improved not only for polar but also for non-polar pollutants by sucessive ion exchanges of H and Ag ions starting from Korean natural zeolite with high adsorption capacity. The modified zeolites with $TiO_2$ coating on the surface revealed high deodorization and photocatalytic decomposition effects. Further modification was made with $10{\sim}20nm$ silica nano particles coating on the surface, the resulting composite particles of $SiO_2/TiO_2/modified$ natural zeolite revealed not only comparable deodorization but also better durability and resisatnce to color change compared to the $TiO_2$/modified natural zeolite without much compensation of photocatalytic decomposition effect, when the composite particles were exposed to the polypropylene non-woven fiber coated with organic binder. It is expected for the composite particle prepared here to be used as indoor building materials for indoor air quality control.

Preparation of solvent-based eco-friendly stone paper (용제기반 친환경 stone paper의 제조)

  • Seok Ju Jeong;Do Yoon Kam;Eun Ok Choi;Hyun Cho;Byeong Woo Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.4
    • /
    • pp.139-144
    • /
    • 2023
  • Stone papers made of inorganic filler and plastic polymer do not use pulp, which is the main raw material of existing papers, so they contribute to the preservation of nature and can be used as more eco-friendly materials when they have biodegradability. Since most stone papers are manufactured by hot extrusion, the amount of ceramic fillers and related physical properties are limited to control manufacturing workability. In this study, the stone paper composition was prepared in a liquid form using solvents, so that there was little limitation on the amount of ceramic filler added and it was also easy to add additives to control biodegradability. They were fabricated from eco-friendly raw materials using waste oyster shells as an inorganic filler and (recyclable) PVC materials as an organic binder. After making a solution using common solvents for PVC, inorganic filler and cellulose to impart biodegradability were mixed and processed into sheets to prepare solvent-based stone papers, and their paper properties were evaluated.