• Title/Summary/Keyword: Organic acid material

Search Result 387, Processing Time 0.029 seconds

Hydrogeological Characteristics of the Pyeongyang Area in the 1930s (1930년대 평양지역의 수리지질 특성)

  • Oh, Yun-Yeong;Hamm, Se-Yeong;Lee, Chung-Mo;Liang, Wei Ming;Kim, Gyoo-Beom;Kim, MoonSu
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.583-595
    • /
    • 2014
  • The chemical properties and composition (pH, CaO, Fe, $HCO{_3}^-$, and $SO{_4}^{2-}$) of groundwater (GW) and surface water (SW) from the northern (non-carbonate bedrock) and southern (carbonate bedrock) sections of the Daedong River, Pyeongyang were analyzed and compared period of the 1930s. In the southern section, the GW and SW has a higher pH and $SO{_4}^{2-}$ concentration, but lower $HCO{_3}^-$ and Fe levels than in the north. This finding reflects a reaction that formed acid by replacing metal ions in inorganic salts by hydrogen, which resulted from the oxidation of organic material in a clay layer.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Photocatalyst and Alumina Microfiltration: Effect of Organic Matters at Nitrogen Back-flushing (광촉매 및 알루미나 정밀여과 혼성공정에 의한 고탁도 원수의 고도정수처리: 질소 역세척시 유기물의 영향)

  • Park, Jin Yong;Sim, Sung Bo
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.441-449
    • /
    • 2012
  • Effect of humic acid (HA) with periodic nitrogen back-flushing was investigated in hybrid process of alumina microfiltration and photocatalyst for drinking water treatment. It was compared and investigated with the previous results of microfiltration water back-flushing or ultrafiltration nitrogen back-flushing in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). As results, the trends of membrane fouling were different depending on nitrogen or water back-flushing, and depending on ultrafiltration or microfiltration made with the same material. Also, the nitrogen back-flushing using microfiltration was more effective membrane fouling inhibition than ultrafiltration, and the nitrogen back-flushing was more effective than water back-flushing using the same microfiltration membrane. Turbidity treatment efficiencies were almost constant independent of HA concentration, but HA treatment efficiency was the maximum at HA 10 mg/L. From this results, it was shown that the treated water HA quality increased as increasing HA concentration, but HA could be removed the most effectively by photocatalyst beads adsorption and photo-oxidation at HA 10 mg/L.

Study for Recovery Silicon and Tempered Glass from Waste PV Modules (태양전지(太陽電池) 폐(廢) 모듈로부터 실리콘 및 강화(彈化)유리 회수(回收)에 관(關)한 연구(硏究))

  • Kang, Suk-Min;Yoo, Sung-Yeol;Lee, Jin-A;Boo, Bong-Hyun;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.45-53
    • /
    • 2011
  • We devised a procedure for the recovery of silicon and tempered glass from waste photovoltaic (PV) modules using optimized conditions. The tempered glass was recovered without any damage using organic solvents. The surface material is removed by applying an acid solution on the surface of the PV cell. Through our proposed method, we offer a much more efficient approach for recycling solar cells with a surfactant than the conventional method. This process, we obtained pure silicon with a yield of 90% by chemical treatment with the surfactant at room temperature for 18 min. The silicon yield was characterized using an inductively coupled plasma-atomic emission spectrometer.

A Study on the Synthesis of Aluminum Tartrate from Aluminum Chloride Solutions (염화(鹽化)알루미늄 수용액(水溶液)으로부터 Aluminum Tartrate의 합성(合成) 연구(硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.54-59
    • /
    • 2011
  • An investigation on the synthesis of aluminum tartrate, one of the aluminum organic compounds, has been performed using aluminum chloride solution as a raw material. For this aim, the effect of the ratio of ethanol/Al solution and pH on the synthesis of aluminum tartrate has been examined and aluminum tartrate synthesized has also been characterized in terms of the chemical composition, X-ray diffraction pattern, particle size distribution, and SEM analysis. As a result, the synthesis more than 97% could be obtained under the conditions of pH more than 3.0 at the ratio of ethanol/Al solution of 3.0. From the chemical analysis of aluminum tartrate synthesized in this work, the content of $NH_4$, Al and C was found to be 9.10, 4.83 and 25.8%, respectively. In addition, aluminum tartrate synthesized from the aluminum chloride solution was found to be $(NH_4)_3Al(C_4H_4O_6)_3$.

Printability of Thermally and Chemically Stable Silica-Titanium Dioxide Composite Coating Layer (실리카-이산화티탄 복합 코팅층의 열적, 화학적 안정성 및 인쇄적성 평가)

  • Kim, Hye Jin;Han, Kyu Sung;Hwang, Kwang Taek;Nahm, Sahn;Kim, Jin Ho
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.631-638
    • /
    • 2019
  • As automation systems become more common, there is growing interest in functional labeling systems using organic and inorganic hybrid materials. Especially, the demand for thermally and chemically stable labeling paper that can be used in a high temperature environment above $300^{\circ}C$ and a strong acid and base atmosphere is increasing. In this study, a composite coating solution for the development of labeling paper with excellent thermal and chemical stability is prepared by mixing a silica inorganic binder and titanium dioxide. The silica inorganic binder is synthesized using a sol-gel process and mixed with titanium dioxide to improve whiteness at high-temperature. Adhesion between the polyimide substrate and the coating layer is secured and the surface properties of the coating layer, including the thermal and chemical stability, are investigated in detail. The effects of the coating solution dispersion on the surface properties of the coating layer are also analyzed. Finally, it is confirmed that the developed functional labeling paper showed excellent printability.

Effect of Electron Donor on the Reductive Dechlorination of PCE in Groundwater Using Biobarrier: Batch Experiment (생물벽체를 이용한 지하수내 PCE의 환원성 탈염소화시 전자공여체의 영향: 회분식 실험)

  • HwangBo, Hyun-Wook;Shin, Won-Sik;Kim, Young-Hun;Song, Dong-Ik
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.22-37
    • /
    • 2006
  • The applicability of biobarrier or in situ microbial filter technology for the remediation of groundwater contaminated with chlorinated solvent was investigated through batch microcosm study. The efficiency and rates of reductive dechlorination of tetrachloroethylene (PCE) are known to be highly dependent on hydrogen concentration. In this study, the effect of electron donors on the reductive dechlorination of PCE was investigated using vermicompost (or worm casting) and peat as a biobarrier medium. The effect of organic acids (lactate, butyrate and benzoate), yeast extract and vitamin $B_{12}$ on the reductive dechlorination was investigated. In the absence of biobarrier medium (adsorbent), addition of electron donors stimulated the dechlorination rate of PCE compared to the control experiment (i.e., no electron donor added). Among the treatments, addition of lactate or lactate/benzoate as hydrogen donor exhibited the highest dechlorination rate ($k_1=0.0260{\sim}0.0266\;day^{-1}$). In case of using vermicompost as a biobarrier medium, amendment of lactate/benzoate exhibited the highest dechlorination rate following with a pseudo-first-order degradation rate constant of $k_1=0.0849\;day^{-1}$. In contrast, when Pahokee peat was used as a biobarrier medium, either butyrate or lactate addition exhibited the highest dechlorination rate with $k_1$ values of 0.1092 and $0.1067\;day^{-1}$, respectively. The results of this study showed the potential applicability of in situ biobarrier technology using vermicompost or peat as a barrier material for the remediation of groundwater contaminated with chlorinated solvent.

Solidification/Stabilization of Heavy Metals in Sewage Sludge Prior to Use as a Landfill Cover Material (매립지 복토재로의 활용을 위한 하수슬러지 내 중금속의 고형화/안정화)

  • Park, Youn-Jin;Shin, Won-Sik;Choi, Sang-June;Lee, Hoon-Ha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.665-675
    • /
    • 2010
  • The effects of chemical binders (ladle slag, ordinary portland cement (OPC), hydroxyapatite and calcium hydroxide) on the solidification/stabilization of heavy metals (Cd, Cu, Ni, Pb, Zn) in sewage sludge were evaluated by chemical leaching tests such as EDTA extraction, TCLP and sequential extraction. The results of EDTA extraction showed that heavy metal concentrations in sewage sludge were highly reduced after solidification/stabilization with slag, cement or calcium hydroxide. However, EDTA interrupted solidification/stabilization of heavy metals by hydroxyapatite. The TCLP-extracted heavy metal concentrations in sewage sludge after solidification/stabilization with chemical amendments were highly reduced. However, Cu concentration in the sewage sludge solidified/stabilized with slag, cement or calcium hydroxide increased because the pH of TCLP solution was higher than 7. Mixtures of sludge 1 : slag 0.2 : calcium hydroxide 0.1 (wt ratio) showed the least leachability in batch TCLP and EDTA extraction. The results of sequential extraction (SM&T, formaly BCR) indicated that the distribution of heavy metals changed from exchangable and carbonate fractions to strongly bound organic fraction. It was found that maximum leachate concentrations of Ba, Cd, Cr and Pb from sewage sludge amended with slag and calcium hydroxide were far below US EPA TCLP regulations.

Performance Characteristics of Organic Electroluminescence Diode Using a Carbon Nanotube-Doped Hole Injection Layer (탄소 나노튜브가 도입된 정공 주입층에 의한 유기발광다이오드의 성능 특성 연구)

  • Kang, Hak-Su;Park, Dae-Won;Choe, Youngson
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.418-423
    • /
    • 2009
  • MWCNT(multi-wall carbon nanotube)-doped PEDOT:PSS(poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)), used as a HIL(hole injection layer) material in OLEDs(organic light emitting diodes), was spin-coated on to the ITO glass to form PEDOT:PSS-MWCNT nano composite thin film. Morphology and transparency characteristics of nano composite thin films with respect to the loading percent of MWCNT have been investigated using FT-IR, UV-Vis and SEM. Furthermore, ITO/PEDOT:PSS-MWCNT/NPD/$Alq_3$/Al devices were fabricated, and then J-V and L-V characteristics were investigated. Functional group-incorporated MWCNT was prepared by acid treatment and showed good dispersion property in PEDOT:PSS solution. PEDOT:PSS-MWCNT thin films possessed good transparency property. For multi-layered devices, it was shown that as the loading percent of MWCNT increased, the current density increased but the luminance dramatically decreased. It might be conclusively suggested that the enhanced charge mobility by MWCNT could increase the current density but the hole trapping property of MWCNT could dramatically decrease the hole mobility in the current devices.

Synthesis of Silica Coated Silicon Substrate by Recycling Silicon Sludge Generated in Semiconductor Packaging Process and Their Application to Epoxy Molding Compound (반도체 패키징 공정에서 발생하는 실리콘 슬러지의 재활용을 통한 Si@SiO2 제조 및 에폭시 몰딩 컴파운드로의 응용)

  • Yeon-Ryong Chu;Dahee Kang;Ha-Yeong Kim;Jisu Lim;Gyu-Sik Park;Suk Jekal;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.3
    • /
    • pp.57-66
    • /
    • 2024
  • In this study, silicon sludge from a semiconductor packaging process is recycled to fabricate silica coated silicon-sludge and applied as a filler for an epoxy molding compound(EMC). Silicon-sludge powder(S-sludge) is treated with acid to remove metallic impurities and then coated using the sol-gel method to synthesize silica coated silicon-sludge powder(SS-sludge). The as-synthesized SS-sludge is subsequently mixed with epoxy resin, a curing agent, and carbon black to create an EMC(SS-sludge EMC). The heat dissipation properties of the EMC were examined using an IR camera. IR camera analysis confirmed that the SS-sludge EMC exhibited the highest surface temperature of 58.5℃ compared to SiO2-based EMC. This enhancement in heat dissipation using SS-sludge EMC is attributed to the excellent thermal conductivity(150W/mK) of the silicon substrate and the presence of the silica layer on the SS-sludge surface which effectively enhances the thermal property of the EMC. Therefore, this study successfully demonstrates the recycling of silicon sludge from a semiconductor packaging process by synthesizing silica coated silicon-sludge and suggests a novel application of this material in semiconductor packaging.

Studies on Improvement of Quality of Round Bale Sliage Using Fresh Rice Straw (라운드 베일을 이용한 생볏짚 사일리지의 품질 향상에 관한 연구)

  • Kang, Woo Sung;Kim, Jong Geun;Chung, Eui Soo;Ham, Jun Sang;Kim, Jong Duk;Kim, Kyeong Nam
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.1
    • /
    • pp.41-48
    • /
    • 1999
  • This experiment was carried out to determine the effect of the silage additives on improvement of quality of fresh rice straw silage using round bale at the forage experimental field, grassland and forage crops division, National Livestock Research Institute, RDA, Suwon from 1997 to 1998. The experiment was arranged in a randomized block design with three replication. The treatments used in this study were consisted of different additives(control, formic acid, molasses, molasses+urea and inoculant). The rice straw silage with molasses+urea treatment resulted in high crude protein content and in vitro dry matter digestibility were increased with molasses of inoculant treatments compare with the control. The mean dry matter of formic acid treatment material was higher than with control but there was no significant difference in dry matter content among the additives treatments. The pH of molasses treatments significantly increased the proportion of lactic acid(P<0.05) and decreased the proportion of butyric acid. The total organic acid content of all treatments had low around 2%. Ammonia-N of molasses+urea treatment was significantly(P<0.05) higher than that of others, but formic acid or inoculant treatments was lower below 10% per total nitrogen. Over a 7d feeding period, the dry matter intake per cattle on the inoculant treatment was higher that on both the untreated round bale silage of fresh rice straw and rice straw hay. Producing cost per kilogram of round bale silage of fresh rice straw was decreased according to the increasement of harvesting area. It is suggested that application of round bale silage system to fresh rice straw with molasses or inoculant was the best treatment for improving preservation as silage, and that animal intake was enhanced by addition of inoculant to fresh rice straw.

  • PDF